题目链接: 传送门

Power of Matrix

Time Limit: 3000MS     

Description


给一个n阶方阵,求A1+A2+A3+......Ak。

思路

A1+A2+...+An = (A1+A2+...+An/2)+(A1+A2+...+An/2) * An/2 = (1 + An/2 ) * (A1+A2+...+An/2)那么对于 (A1+A2+...+An/2)也能用同样的方法去求,不断对半下去计算,最后总体复杂度为log(n)^2
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 50;
const int mod = 10;

struct Matrix
{
    int mat[50][50];
    int r,c;
    Matrix(int r1 = 0,int c1 = 0):r(r1),c(c1)
    {
        memset(mat,0,sizeof(mat));
    }
    void E()
    {
        memset(mat,0,sizeof(mat));
        for (int i = 0;i < r;i++)
        {
            for (int j = 0;j < c;j++)
            {
                mat[i][j] = (i == j);
            }
        }
    }
    Matrix operator+(const Matrix & m)
    {
        Matrix res(r,c);
        for (int i = 0; i < r; i++)
        {
            for (int j = 0; j < c; j++)
            {
                res.mat[i][j] = (mat[i][j] + m.mat[i][j])%mod;
            }
        }
        return res;
    }

    Matrix operator * (const Matrix & m)
    {
        Matrix res(r,m.c);
        for (int i = 0; i < r; i++)
        {
            for (int j = 0; j < m.c; j++)
            {
                for (int k = 0; k < c; k++)
                {
                    res.mat[i][j] = (res.mat[i][j] + mat[i][k] * m.mat[k][j])%mod;
                }
            }
        }
        return res;
    }
    void show()
    {
        for (int i = 0;i < r;i++)
        {
            bool first = true;
            for (int j = 0;j < c;j++)
            {
                first?printf("%d",mat[i][j]):printf(" %d",mat[i][j]);
                first = false;
            }
            printf("\n");
        }
    }
};

Matrix pow(Matrix x,int n)
{
    Matrix res(x.r,x.c);
    res.E();
    while (n > 0)
    {
        if (n&1)
        {
            res = res * x;
        }
        x = x * x;
        n >>= 1;
    }
    return res;
}

Matrix sum(Matrix mat,int k)
{
    if (k == 1)
    {
        return mat;
    }
    Matrix E(mat.r,mat.c);
    E.E();
    if (k&1)
    {
        return (E + pow(mat,k/2))*sum(mat,k/2) + pow(mat,k);
    }
    else
    {
        return (E + pow(mat,k/2))*sum(mat,k/2);
    }
}

int main()
{
    int n,k;
    while (~scanf("%d%d",&n,&k) && n && k)
    {
        Matrix Mat(n,n);
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
            {
                scanf("%d",&Mat.mat[i][j]);
                Mat.mat[i][j] %= mod;
            }
        }
        if (k == 0)
        {
            Mat.show();
            continue;
        }
        Mat = sum(Mat,k);
        Mat.show();
        printf("\n");
    }
    return 0;
}

UVa 11149 Power of Matrix(倍增法、矩阵快速幂)的更多相关文章

  1. Power of Matrix(uva11149+矩阵快速幂)

    Power of Matrix Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit St ...

  2. UVA 11149 - Power of Matrix(矩阵乘法)

    UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...

  3. UVA 11149 Power of Matrix

    矩阵快速幂. 读入A矩阵之后,马上对A矩阵每一个元素%10,否则会WA..... #include<cstdio> #include<cstring> #include< ...

  4. POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】

    典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...

  5. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

  6. HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...

  7. UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)

    题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...

  8. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  9. UVA 11149 Power of Matrix 快速幂

    题目链接: http://acm.hust.edu.cn/vjudge/contest/122094#problem/G Power of Matrix Time Limit:3000MSMemory ...

随机推荐

  1. Data URI 应用场景小结

    Data URI scheme 在前端开发中是个常用的技术,通常会在 CSS 设置背景图中用到.比如在 Google 的首页就有用到: Data URI scheme 简称 Data URI,经常会被 ...

  2. unity3d Vector3.Lerp解析

    Vector3.Lerp:http://www.ceeger.com/Script/Vector3/Vector3.Lerp.html 手册中描述的不是很详细,什么叫“按照数字t在from到to之间插 ...

  3. C/C++代码覆盖工具gcov与lcov入门

    C/C++代码覆盖工具gcov与lcov入门 gcov是一个可用于C/C++的代码覆盖工具,是gcc的内建工具.下面介绍一下如何利用gcov来收集代码覆盖信息.想要用gcov收集代码覆盖信息,需要在g ...

  4. [BZOJ1299]巧克力棒(博弈论)

    题目:http://hzwer.com/1976.html 分析:先Orz hzwer 对于盒子外面的巧克力棒,就是Nim游戏. 所以就很容易想到先手第一步最好从盒子中取出m根巧克力棒,使得这些巧克力 ...

  5. learning to rank

    Learning to Rank入门小结 + 漫谈 Learning to Rank入门小结 Table of Contents 1 前言 2 LTR流程 3 训练数据的获取4 特征抽取 3.1 人工 ...

  6. 记一次使用命令行启动部署在tomcat上的应用

    在Eclipes进行程序开发完成后,一般都会直接在Eclipse部署启动,其中的一些启动参数设置都会在其中进行,若用命令行启动,则需要手动配置. 程序开发完成后打成的war包,需要部署到Tomcat应 ...

  7. js表单提交,面向对象

    一.js表单验证之后再提交 1.普通按钮onclick函数调用表单的submit()函数 <input type=button name="submit1" value=&q ...

  8. ajax post(copy part)

    srcpage var q=new XMLHttpRequest(); var data='usr=weidiao&pwd=haha'; data=encodeURI(data); var u ...

  9. MAC中查看Python安装路径

    [admin@admindeMac:~]which  Python /usr/bin/Python

  10. void与void之间没有隐式转换(纯属恶搞,请勿在意)

    强大的vs弹出了这个提示:.有没有觉得强大的vs不应该出现该提示. 但就是出现了. 看客,您知道怎么让vs弹出这个提示吗^~^