Spark on YARN两种运行模式介绍
http://www.aboutyun.com/thread-12294-1-1.html
(出处: about云开发)
问题导读
1.Spark在YARN中有几种模式?
2.Yarn Cluster模式,Driver程序在YARN中运行,应用的运行结果在什么地方可以查看?
3.由client向ResourceManager提交请求,并上传jar到HDFS上包含哪些步骤?
4.传递给app的参数应该通过什么来指定?
5.什么模式下最后将结果输出到terminal中?
Spark在YARN中有yarn-cluster和yarn-client两种运行模式:
1.Yarn Cluster
Spark Driver首选作为一个ApplicationMaster在Yarn集群中启动,客户端提交给ResourceManager的每一个job都会在集群的worker节点上分配一个唯一的ApplicationMaster,
由该ApplicationMaster管理全生命周期的应用。因为Driver程序在YARN中运行,所以事先不用启动Spark Master/Client,应用的运行结果不能再客户端显示(可以在history server中查看)
,所以最好将结果保存在HDFS而非stdout输出,客户端的终端显示的是作为YARN的job的简单运行状况。
by @Sandy Ryza
by 明风@taobao
从terminal的output中看到任务初始化更详细的四个步骤:
14/09/28 11:24:52 INFO RMProxy: Connecting to ResourceManager at hdp01/172.19.1.231:8032
14/09/28 11:24:52 INFO Client: Got Cluster metric info from ApplicationsManager (ASM), number of NodeManagers: 4
14/09/28 11:24:52 INFO Client: Queue info ... queueName: root.default, queueCurrentCapacity: 0.0, queueMaxCapacity: -1.0,
queueApplicationCount = 0, queueChildQueueCount = 0
14/09/28 11:24:52 INFO Client: Max mem capabililty of a single resource in this cluster 8192
14/09/28 11:24:53 INFO Client: Uploading file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar to hdfs://hdp01:8020/user/spark/.sparkStaging/application_1411874193696_0003/spark-examples_2.10-1.0.0-cdh5.1.0.jar
14/09/28 11:24:54 INFO Client: Uploading file:/usr/lib/spark/assembly/lib/spark-assembly-1.0.0-cdh5.1.0-hadoop2.3.0-cdh5.1.0.jar to hdfs://hdp01:8020/user/spark/.sparkStaging/application_1411874193696_0003/spark-assembly-1.0.0-cdh5.1.0-hadoop2.3.0-cdh5.1.0.jar
14/09/28 11:24:55 INFO Client: Setting up the launch environment
14/09/28 11:24:55 INFO Client: Setting up container launch context
14/09/28 11:24:55 INFO Client: Command for starting the Spark ApplicationMaster: List($JAVA_HOME/bin/java, -server, -Xmx512m, -Djava.io.tmpdir=$PWD/tmp, -Dspark.master="spark://hdp01:7077", -Dspark.app.name="org.apache.spark.examples.SparkPi", -Dspark.eventLog.enabled="true", -Dspark.eventLog.dir="/user/spark/applicationHistory", -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.deploy.yarn.ApplicationMaster, --class, org.apache.spark.examples.SparkPi, --jar , file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar, , --executor-memory, 1024, --executor-cores, 1, --num-executors , 2, 1>, <LOG_DIR>/stdout, 2>, <LOG_DIR>/stderr)
14/09/28 11:24:55 INFO Client: Submitting application to ASM
14/09/28 11:24:55 INFO YarnClientImpl: Submitted application application_1411874193696_0003
14/09/28 11:24:56 INFO Client: Application report from ASM:
application identifier: application_1411874193696_0003
appId: 3
clientToAMToken: null
appDiagnostics:
appMasterHost: N/A
appQueue: root.spark
appMasterRpcPort: -1
appStartTime: 1411874695327
yarnAppState: ACCEPTED
distributedFinalState: UNDEFINED
appTrackingUrl: http://hdp01:8088/proxy/application_1411874193696_0003/
appUser: spark
1.由client向ResourceManager提交请求,并上传Jar到HDFS上
这期间包括四个步骤:
a).连接到RM
b).从RM ASM(applicationsManager)中获得metric,queue和resource等信息。
c).upload app jar and spark-assembly jar
d).设置运行环境和container上下文
2.ResourceManager向NodeManager申请资源,创建Spark ApplicationMaster(每个SparkContext都有一个ApplicationManager)
3.NodeManager启动Spark App Master,并向ResourceManager ASM注册
4.Spark ApplicationMaster从HDFS中找到jar文件,启动DAGScheduler和YARN Cluster Scheduler
5.ResourceManager向ResourceManager ASM注册申请container资源(INFO YarnClientImpl: Submitted application)
6.ResourceManager通知NodeManager分配Container,这是可以收到来自ASM关于container的报告。(每个container的对应一个executor)
7.Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。
需要注意的是:
a). Spark中的localdir会被yarn.nodemanager.local-dirs替换
b). 允许失败的节点数(spark.yarn.max.worker.failures)为executor数量的两倍数量,最小为3.
c). SPARK_YARN_USER_ENV传递给spark进程的环境变量
d). 传递给app的参数应该通过–args指定
II. yarn-client
(YarnClientClusterScheduler)查看对应类的文件
在Yarn-client模式下,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。一般来说,如果运行的结果仅仅返回到terminal上时需要配置这个。
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和excutor,另外ApplicationMaster和executor都装在在container里运行,container默认的内存是1g,ApplicationMaster分配的内存是driver-memory,executor分配的内存是executor-memory.同时,因为Driver在客户端,所以程序的运行结果可以在客户端显示,Driver以进程名为SparkSubmit的形式存在。
配置Yarn-client模式统一需要HADOOP_CONF_DIR/YARN_CONF_DIR和SPARK_JAR变量
提交任务测试:
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client /usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar
terminal output: 14/09/28 11:18:34 INFO Client: Command for starting the Spark ApplicationMaster: List($JAVA_HOME/bin/java, -server, -Xmx512m, -Djava.io.tmpdir=$PWD/tmp, -Dspark.tachyonStore.folderName="spark-9287f0f2-2e72-4617-a418-e0198626829b", -Dspark.eventLog.enabled="true", -Dspark.yarn.secondary.jars="", -Dspark.driver.host="hdp01", -Dspark.driver.appUIHistoryAddress="", -Dspark.app.name="Spark Pi", -Dspark.jars="file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar", -Dspark.fileserver.uri="http://172.19.17.231:53558", -Dspark.eventLog.dir="/user/spark/applicationHistory", -Dspark.master="yarn-client", -Dspark.driver.port="35938", -Dspark.httpBroadcast.uri="http://172.19.17.231:43804", -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.deploy.yarn.ExecutorLauncher, --class, notused, --jar , null, --args 'hdp01:35938' , --executor-memory, 1024, --executor-cores, 1, --num-executors , 2, 1>, <LOG_DIR>/stdout, 2>, <LOG_DIR>/stderr)
14/09/28 11:18:34 INFO Client: Submitting application to ASM
14/09/28 11:18:34 INFO YarnClientSchedulerBackend: Application report from ASM:
appMasterRpcPort: -1
appStartTime: 1411874314198
yarnAppState: ACCEPTED
......
最后将结果输出到terminal中
Spark on YARN两种运行模式介绍的更多相关文章
- spark on mesos 两种运行模式
spark on mesos 有粗粒度(coarse-grained)和细粒度(fine-grained)两种运行模式,细粒度模式在spark2.0后开始弃用. 细粒度模式 优点 spark默认运行的 ...
- Spark on YARN的两种运行模式
Spark on YARN有两种运行模式,如下 1.yarn-cluster:适合于生产环境. Spark的Driver运行在ApplicationMaster中,它负责向YARN Re ...
- Solr系列二:solr-部署详解(solr两种部署模式介绍、独立服务器模式详解、SolrCloud分布式集群模式详解)
一.solr两种部署模式介绍 Standalone Server 独立服务器模式:适用于数据规模不大的场景 SolrCloud 分布式集群模式:适用于数据规模大,高可靠.高可用.高并发的场景 二.独 ...
- Spark Client和Cluster两种运行模式的工作流程
1.client mode: In client mode, the driver is launched in the same process as the client that submits ...
- 在 IIS 7.5 中,应用程序池有两种运行模式:集成模式和经典模式。
应用程序池模式会影响服务器处理托管代码请求的方式. 如果托管应用程序在采用集成模式的应用程序池中运行,服务器将使用 IIS 和 ASP.NET 的集成请求处理管道来处理请求. 如果托管应用程序在采用经 ...
- Spark on Yarn 集群运行要点
实验版本:spark-1.6.0-bin-hadoop2.6 本次实验主要是想在已有的Hadoop集群上使用Spark,无需过多配置 1.下载&解压到一台使用spark的机器上即可 2.修改配 ...
- Spark剖析-宽依赖与窄依赖、基于yarn的两种提交模式、sparkcontext原理剖析
Spark剖析-宽依赖与窄依赖.基于yarn的两种提交模式.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 2.1 Standalne-client 2. ...
- 【Spark篇】--Spark中Standalone的两种提交模式
一.前述 Spark中Standalone有两种提交模式,一个是Standalone-client模式,一个是Standalone-master模式. 二.具体 1.Standalon ...
- 小记--------spark的两种提交模式
spark的两种提交模式:yarn-cluster . yarn-client 图解
随机推荐
- EF框架step by step(3)—Code-First
CodeFirst是EF框架的第三种方式,也是最为复杂一种方式,本文将以EF4.1版本为基础,简要讲解一下用法,同时,也介绍DbContext的用法. 本文采用的示例仍然是前两篇采用的博客用户的示例. ...
- Fetch from Upstream 变灰失效
Team——>Remote——>Configure Fetch from Upstream… Team——>Remote——>Configure Push to Upstre ...
- unity MenuAnim.MoveTo
移动函数,第一个参数是gameobject,第二个参数是pos,第三个参数是时间,第四个参数延迟 MenuAnim.MoveTo(title, new Vector3(1, 0.7f, 0), 0.5 ...
- BZOJ3873 : [Ahoi2014]拼图
如果答案在某个碎片内部,那么直接悬线法解决,时间复杂度$O(n\sum)$. 如果$n$比较大,那么$\sum$比较小. 求出每个点向上能延伸的长度,枚举每个点向上这条线段作为短板. 算出完全可选的碎 ...
- BZOJ4584 : [Apio2016]赛艇
首先将值域离散化成$O(n)$个连续段. 设$f[i][j][k]$表示第$i$个学校派出的数量在第$j$个连续段,在第$j$个连续段一共有$k$个学校的方案数.用组合数以及前缀和转移即可. 时间复杂 ...
- HDU 3072 (强连通分量)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3072 题目大意:为一个有向连通图加边.使得整个图全连通,有重边出现. 解题思路: 先用Tarjan把 ...
- 数论初步(费马小定理) - Happy 2004
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...
- POJ 2420 A Star not a Tree?(模拟退火)
题目链接 居然1Y了,以前写的模拟退火很靠谱啊. #include <cstdio> #include <cstring> #include <string> #i ...
- URAL 1346. Intervals of Monotonicity(DP)
题目链接 错误的贪了一下,然后D了两下就过了.注意是不上升和不下降..不是上升和下降.. #include <cstring> #include <cstdio> #inclu ...
- How to create a project with Oracle Policy Modeling
This blog is about how to create a project with Oracle Policy Modeling. You can do it successfully i ...