B - Candy

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Appoint description: 
System Crawler  (2014-10-17)

Description

LazyChild is a lazy child who likes candy very much. Despite being very young, he has two large candy boxes, each contains n candies initially. Everyday he chooses one box and open it. He chooses the first box with probability p and the second box with probability (1 - p). For the chosen box, if there are still candies in it, he eats one of them; otherwise, he will be sad and then open the other box. 
He has been eating one candy a day for several days. But one day, when opening a box, he finds no candy left. Before opening the other box, he wants to know the expected number of candies left in the other box. Can you help him?
 

Input

There are several test cases. 
For each test case, there is a single line containing an integer n (1 ≤ n ≤ 2 × 10 5) and a real number p (0 ≤ p ≤ 1, with 6 digits after the decimal). 
Input is terminated by EOF.
 

Output

For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) and Y is a real number indicating the desired answer. 
Any answer with an absolute error less than or equal to 10 -4 would be accepted.
 

Sample Input

10 0.400000
100 0.500000
124 0.432650
325 0.325100
532 0.487520
2276 0.720000
 

Sample Output

Case 1: 3.528175
Case 2: 10.326044
Case 3: 28.861945
Case 4: 167.965476
Case 5: 32.601816
Case 6: 1390.500000
 
公式

快速排列组合函数:logC(m,n),zuhe[i]其实就是i的阶乘,然后给取log值
这样zuhe[m]-zuhe[n]-zuhe[m-n]就是C(m,n)的log值
然后把其余也取对数,然后再求exp就好了!
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define M(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f using namespace std; int n;
double p;
double zuhe[]; double logC(int m,int n)
{
return zuhe[m]-zuhe[n]-zuhe[m-n];
} int main()
{
int cas = ;
zuhe[] = ;
for(int i = ;i<;i++) zuhe[i] = zuhe[i-]+log(i*1.0);
while(scanf("%d%lf",&n,&p)==)
{
double res = ;
for(int i = ;i<=n;i++)
{
res+=(n-i)*exp(logC(n+i,i)+(n+)*log(p)+(i)*log(-p));
res+=(n-i)*exp(logC(n+i,i)+(n+)*log(-p)+(i)*log(p));
}
printf("Case %d: %.16f\n",cas++,res);
}
return ;
}

2012Chengdu B (快速组合数)的更多相关文章

  1. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  2. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  3. UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)

    题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...

  4. Paths on a Grid POJ - 1942 组合数学 (组合数的快速计算)

    题意:格路问题 没什么难度 难点在于如何快速计算相对较大的组合数 思路:运用手写计算组合数的方式进行计算  如c(8,3) 如果手算就是   8*7*6/(3*2*1)这样可以很快得解出 计算代码为: ...

  5. Gym - 101775A Chat Group 组合数+逆元+快速幂

    It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: ...

  6. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  7. 【BZOJ4870】组合数问题(动态规划,矩阵快速幂)

    [BZOJ4870]组合数问题(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 显然直接算是没法做的.但是要求的东西的和就是从\(nk\)个物品中选出模\(k\)意义下恰好\(r\)个物品的方案数 ...

  8. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  9. 牛客网 牛客小白月赛1 I.あなたの蛙が帰っています-卡特兰数,组合数阶乘逆元快速幂

    I.あなたの蛙が帰っています   链接:https://www.nowcoder.com/acm/contest/85/I来源:牛客网     这个题有点意思,是卡特兰数,自行百度就可以.卡特兰数用处 ...

随机推荐

  1. ubantu eclipe

    sudo tar zxvf '/tmp/eclipse-inst-linux64.tar.gz' -C/usr/lib 4.在终端输入: $ sudo gedit /usr/share/applica ...

  2. Dword、LPSTR、LPWSTR、LPCSTR、LPCWSTR、LPTSTR、LPCTSTR

    DWORD:本来被定义为unsigned long,DWORD的含义就是双字,一个字是2字节,双字就是32字节. 但是在C/C++中,经常会用到把一个指针转换成数字储存,然后再将其传唤为指针调用.那么 ...

  3. Linux下安装py-leveldb

    1.下载源代码 svn checkout http://py-leveldb.googlecode.com/svn/trunk/ py-leveldb-read-only 2.安装辅助工具 sudo ...

  4. MooseFs-分布式文件系统系列(四)之简单聊聊MFS的日常维护

    回顾 文件或目录的额外属性(noower,noattracache和noentrycache),可以通过MFS提供的命令(mfsgeteattr,mfsseteattr,mfsdeleattr等)检查 ...

  5. java的对象的总结:(PO,VO,DAO,BO,POJO)

    一.PO:persistant object 持久对象,可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数 ...

  6. 深入JVM-常用Java虚拟机参数

    一.跟踪调试参数 1.1 跟踪垃圾回收-读懂虚拟机日志 Java的一大特色就是支持自动的垃圾回收(GC),但是有时候,如果垃圾回收频繁出现,或者占用了太长的CPU时间,就不得不引起重视.此时,就需要一 ...

  7. css015 定位网页上的元素

    css015 定位网页上的元素 一.   定位属性的功能 1.         四中类型的定位 Position: absolute relative fixed static a. 绝对定位 绝对定 ...

  8. JQuery------动态添加的元素on方法不起作用解决方法

    转载: http://www.jb51.net/article/70342.htm

  9. oc必须知道的知识点

    id数据类型 1.通用的指针类型 2.没有*号 3.使用id类型时,不能给对象的属性或成员变量进行赋值 4.可以对其发送任何(存在的)消息   import与@class的区别 1.import会包含 ...

  10. 第二章 存储,2.2 AliCloudDB--双11商家后台数据库的基石(作者:玄惭)

    2.2 AliCloudDB--双11商家后台数据库的基石 前言 2016年天猫双11购物狂欢节已经完美落下帷幕,千亿成交的背后,作为整个天猫商家后台数据库的基石,AliCloudDB是如何保障在零点 ...