[问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)
[问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)
\[|A|=\begin{vmatrix} 1 & x_1^2-ax_1 & x_1^3-ax_1^2 & \cdots & x_1^n-ax_1^{n-1} \\ 1 & x_2^2-ax_2 & x_2^3-ax_2^2 & \cdots & x_2^n-ax_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n^2-ax_n & x_n^3-ax_n^2 & \cdots & x_n^n-ax_n^{n-1} \end{vmatrix}.\]
从第二列开始,每一列都可记做 “1” 和 “2” 两个部分,分别对后 \(n-1\) 列进行拆分,共可拆成 \(2^{n-1}\) 个行列式之和. 我们来考虑拆分出来的这些行列式,假设第 \(i\) 列是从左至右第一个选择 “1” 的列,由行列式的性质,要使拆分出来的行列式非零,则第 \(i+1,\cdots,n\) 列都要选择 “1”,此时前面的第 \(2,\cdots,i-1\) 列都是选择 “2”,因此每一列都可以提取公因子 \(-a\),行列式可提取出 \((-a)^{i-1}\). 根据上面的分析,可得
\[|A|=\begin{vmatrix} 1 & x_1^2 & x_1^3 & \cdots & x_1^n \\ 1 & x_2^2 & x_2^3 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n^2 & x_n^3 & \cdots & x_n^n \end{vmatrix}+(-a)\begin{vmatrix} 1 & x_1 & x_1^3 & \cdots & x_1^n \\ 1 & x_2 & x_2^3 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^3 & \cdots & x_n^n \end{vmatrix}\]
\[+\cdots+(-a)^{n-1}\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix}.\]
把 \(|A|\) 看成是按第一行进行展开的 \(n+1\) 阶行列式,有
\[|A|=\begin{vmatrix} 0 & -1 & -a & \cdots & -a^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix}.\]
当 \(a\neq 0\) 时,我们有 (接下去的一步是按第一列进行拆分):
\[|A|=-\frac{1}{a}\begin{vmatrix} 1+(-1) & a & a^2 & \cdots & a^n \\ 1+0 & x_1 & x_1^2 & \cdots & x_1^n \\ 1+0 & x_2 & x_2^2 & \cdots & x_2^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1+0 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix}\]
\[=-\frac{1}{a}\Big(\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^n(x_i-a)-\prod_{1\leq i<j\leq n}(x_j-x_i)\prod_{i=1}^nx_i\Big)\]
\[=\frac{1}{a}\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\prod_{i=1}^nx_i-\prod_{i=1}^n(x_i-a)\Big).\]
当 \(a=0\) 时,可用升阶法和 Vander Monde 行列式求出
\[|A|=\prod_{1\leq i<j\leq n}(x_j-x_i)\Big(\sum_{i=1}^nx_1\cdots\hat{x}_i\cdots x_n\Big).\quad\Box\]
[问题2014A01] 解答二(后 n-1 列拆分法,由郭昱君同学提供)的更多相关文章
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
- [问题2014A01] 解答三(升阶法,由董麒麟同学提供)
[问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...
- [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)
[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...
- PHP微信支付开发之扫描支付(模式二)后如何回调
其实在写这篇文章的时候感觉自己已经落伍了,不过笔者在百度上搜索"微信支付开发之扫描支付(模式二)后如何回调"寻找答案时,发现依旧有很多朋友没有解决这个问题,所以就把自己的解决思路分 ...
- C/C++遍历二维数组,列优先(column-major)比行优先(row-major)慢,why?
C/C++遍历二维数组,列优先(column-major)比行优先(row-major)慢,why? 简单粗暴的答案:存在Cache机制! 稍微啰嗦一点:CPU访问内存(读/写,遍历数组的话主要是读) ...
- [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...
- ACM题目————列变位法解密
这是在百度之星看到的. Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐 ...
- pandas 将excel一列拆分成多列重新保存
利用pd.read_excel 做到将第二列“EVT-LBL”按“-”分割后重新加三列在df后面 1 读取表格df 2. 分割第二列短横连接的数字,保存到df2---- 参考:str.spilt( ...
- ACM学习历程—BestCoder 2015百度之星资格赛1002 列变位法解密(vector容器)
Problem Description 列变位法是古典密码算法中变位加密的一种方法,具体过程如下 将明文字符分割成个数固定的分组(如5个一组,5即为密钥),按一组一行的次序整齐排列,最后不足一组不放置 ...
随机推荐
- WPF 打开文件、文件夹
打开文件代码: OpenFileDialog openFileDialog = new OpenFileDialog(); openFileDialog.Title = &quo ...
- smaller programs should improve performance
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION In this section, we l ...
- 交流从选择coding.net开始
之前提到我们需要coding.net(一个可以帮助你在线存放管理代码的地方,便于项目合作)来进行学习交流,它可以帮我们记录我们入门的点点滴滴,现在就简单介绍一下coding.net的注册及使用. 1. ...
- 深入理解Spark RDD
RDD是什么? RDD,全称是Reslilient Distributed Datasets,是一个容错的,并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区.同时,RDD还 ...
- LeetCode Count of Range Sum
原题链接在这里:https://leetcode.com/problems/count-of-range-sum/ 题目: Given an integer array nums, return th ...
- 《奥威Power-BI销售计划填报 》精彩回顾
我们经常遇到这样的问题:业务单据是来自ERP系统,销售计划是EXCEL做的,想把两者整合在一起做分析,怎么办? 单据大,导出EXCEL太费劲,也很难分析到历史数据,但又不能动ERP系统 (自己也不会改 ...
- Python基础二. 数据结构、控制流、运算符、真值测试
一.概述 数据结构上广义上有两种,单一类型和集合类型 单一类型,表示一种对象 集合类型,表示包含多种对象 Python 中的内建的数据类型有str.list.tuple.dict.set.number ...
- 捕获Insert触发器失败记录
1.背景 环境:发布服务器A Windows2008+SQL2008,分发服务器B Windows2008+SQL2008,订阅服务器C Windows2008+SQL2012发布服务器A上的用户信息 ...
- mvc 数据验证金钱格式decimal格式验证
mvc 数据验证金钱格式decimal格式验证 首先看下代码 /// <summary> /// 产品单价 /// </summary> [Display(Name = &qu ...
- Linux下添加用户及用户组
创建用户组hdpgroup: $ sudo addgroup hdpgroup 如果用户hdp不存在,把hdp添加到hdpgroup用户组: $ sudo adduser --force -ingro ...