一致性哈希算法(consistent hashing)样例+測试。
一个简单的consistent hashing的样例,非常easy理解。
首先有一个设备类,定义了机器名和ip:
public class Cache
{
public String name;
public String ipAddress;
}
然后是基本的实现:
public class Shard<T> {
//hash 算法并非保证绝对的平衡,假设 cache 较少的话,对象并不能被均匀的映射到 cache 上,
//所以添加虚拟节点
private TreeMap<Long, T> nodes;
private List<T> shards; //节点碎片
private final int NODE_NUM = 10; // 每一个机器节点关联的虚拟节点个数 public Shard(List<T> shards) {
this.shards = shards;
init();
} private void init() {
nodes = new TreeMap<Long, T>();
for (int i = 0; i < shards.size(); i++)
{ // 遍历真实节点
final T shardInfo = shards.get(i); for (int n = 0; n < NODE_NUM; n++)
{
// 真实节点关联虚拟节点,真实节点是VALUE;
nodes.put((long) Hash("SHARD-" + i + "-NODE-" + n), shardInfo);
}
System.out.println(shardInfo);
}
} public T getShardInfo(String key) {
SortedMap<Long, T> tail = nodes.tailMap((long) Hash(key));
if (tail.size() == 0) {
return nodes.get(nodes.firstKey());
}
//找到近期的虚拟节点
return tail.get(tail.firstKey());
} /**
* 改进的32位FNV算法,高离散
*
* @param string
* 字符串
* @return int值
*/
public static int Hash(String str)
{
final int p = 16777619;
int hash = (int) 2166136261L;
for (byte b : str.getBytes())
hash = (hash ^ b) * p;
hash += hash << 13;
hash ^= hash >> 7;
hash += hash << 3;
hash ^= hash >> 17;
hash += hash << 5;
return hash;
} }
到这里就完了,是不是非常easy,以下来測试下:
public class Test
{ /**
* @param args
*/
public static void main(String[] args)
{
List<Cache> myCaches=new ArrayList<Cache>();
Cache cache1=new Cache();
cache1.name="COMPUTER1";
Cache cache2=new Cache();
cache2.name="COMPUTER2";
myCaches.add(cache1);
myCaches.add(cache2); Shard<Cache> myShard=new Shard<Cache>(myCaches); Cache currentCache=myShard.getShardInfo("info1");
System.out.println(currentCache.name); // for(int i=0;i<20;i++)
// {
// String object=getRandomString(20);//产生20位长度的随机字符串
// Cache currentCache=myShard.getShardInfo(object);
// System.out.println(currentCache.name);
// } } public static String getRandomString(int length) { //length表示生成字符串的长度
String base = "abcdefghijklmnopqrstuvwxyz0123456789";
Random random = new Random();
StringBuffer sb = new StringBuffer();
for (int i = 0; i < length; i++) {
int number = random.nextInt(base.length());
sb.append(base.charAt(number));
}
return sb.toString();
} }
我们有两台设备,computer1和computer2,第一次初始化要构建一个2的32次方的环,并往上面放设备。这个环由改进的FNV算法实现。位置也由hash算法确定。
但我们仅仅有两台设备,非常明显在环上会分布不均匀(这个就不解释了,网上非常多资料)。于是我们每台设备添加10个虚拟设备。
最后分布例如以下:
-1561290727=Hash.Cache@10f11b8,
-1083588870=Hash.Cache@10f11b8,
-697149481=Hash.Cache@10f11b8,
-253517545=Hash.Cache@10f11b8,
397383558=Hash.Cache@10f11b8,
1078505027=Hash.Cache@10f11b8,
1810977445=Hash.Cache@10f11b8,
1844081498=Hash.Cache@10f11b8,
2004894833=Hash.Cache@10f11b8,
2051863688=Hash.Cache@10f11b8
-2147483648到2147483647之间是不是比較均匀,这是java的,假设是c#的就是0~2的32次方。我们hash计算出KEY值为2049553054,然后顺时针找到近期的位置,即为
2051863688=Hash.Cache@10f11b8
结果我们定位到了COMPUTER1
最好我们要看看平衡性怎样:取消上面凝视的代码,循环20次,得到结果例如以下:
COMPUTER1
COMPUTER2
COMPUTER1
COMPUTER2
COMPUTER1
COMPUTER2
COMPUTER1
COMPUTER1
COMPUTER1
COMPUTER2
COMPUTER2
COMPUTER2
COMPUTER1
COMPUTER2
COMPUTER1
COMPUTER1
COMPUTER1
COMPUTER2
COMPUTER1
COMPUTER2
大家能够自己取试试,
FNV哈希算法是一种高离散性的哈希算法,特别适用于哈希很相似的字符串,比如:URL,IP,主机名,文件名称等。
下面服务使用了FNV:
1、calc
2、DNS
3、mdbm key/value查询函数
4、数据库索引hash
5、主流web查询/索引引擎
6、高性能email服务
7、基于消息ID查询函数
8、auti-spam反垃圾邮件过滤器
9、NFS实现(比方freebsd 4.3, linux NFS v4)
10、Cohesia MASS project
11、Ada 95的spellchecker
12、开源x86汇编器:flatassembler user-defined symbol hashtree
13、PowerBASIC
14、PS2、XBOX上的文本资源
15、非加密图形文件指纹
16、FRET
17、Symbian DASM
18、VC++ 2005的hash_map实现
19、memcache中的libketama
20、 PHP 5.x
21、twitter中用于改进cache碎片
22、BSD IDE project
23、deliantra game server
24、 Leprechaun
25、IPv6流标签
一致性哈希算法(consistent hashing)样例+測试。的更多相关文章
- 一致性哈希算法(consistent hashing)(转)
原文链接:每天进步一点点——五分钟理解一致性哈希算法(consistent hashing) 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网 ...
- 一致性哈希算法(Consistent Hashing Algorithm)
一致性哈希算法(Consistent Hashing Algorithm) 浅谈一致性Hash原理及应用 在讲一致性Hash之前我们先来讨论一个问题. 问题:现在有亿级用户,每日产生千万级订单,如 ...
- 转 白话解析:一致性哈希算法 consistent hashing
摘要: 本文首先以一个经典的分布式缓存的应用场景为铺垫,在了解了这个应用场景之后,生动而又不失风趣地介绍了一致性哈希算法,同时也明确给出了一致性哈希算法的优点.存在的问题及其解决办法. 声明与致谢: ...
- (转)每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)
背景:在redis集群中,有关于一致性哈希的使用. 一致性哈希:桶大小0~(2^32)-1 哈希指标:平衡性.单调性.分散性.负载性 为了提高平衡性,引入“虚拟节点” 每天进步一点点——五分钟理解一致 ...
- 白话解析:一致性哈希算法 consistent hashing【转】
学习一致性哈希算法原理的时候看到博主朱双印的一片文章,看完就懂,大佬! 白话解析:一致性哈希算法 consistent hashing
- _00013 一致性哈希算法 Consistent Hashing 新的讨论,并出现相应的解决
笔者博文:妳那伊抹微笑 博客地址:http://blog.csdn.net/u012185296 个性签名:世界上最遥远的距离不是天涯,也不是海角,而是我站在妳的面前.妳却感觉不到我的存在 技术方向: ...
- 一致性哈希算法(consistent hashing)PHP实现
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简单哈希 ...
- 五分钟理解一致性哈希算法(consistent hashing)
转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法 ...
- 每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)
转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...
- 一致性哈希算法(consistent hashing)【转】
一致性哈希算法 来自:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希 ...
随机推荐
- PHP - 代码分离
总代码: <?php /* * Version:1.0 * CreateTime:2015年11月11日 * Author:HF_Ultrastrong *///引入公共文件,在公共文件中创建, ...
- France '98
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=30506#problem/H #include<map> #include&l ...
- SilkTest Q&A 12
111. 谁能告诉我,正在执行的SilkTest的log是存放在哪里? 答案1: 用下面的命令可以导出文本格式的log "c:/program files/segue/silktest/pa ...
- ORACLE11.2.0 SQLPLUS 报 error while loading shared libraries
相应的环境平台: OS: Linux TEST11G 2.6.18-8.el5 #1 SMP Fri Jan 26 14:15:21 EST 2007 i686 i686 i386 GNU/Linux ...
- C语言中的enum(枚举)使用方法
近期在写数据结构的广义表时候用到了这个概念,在学习C语言的时候没有太注意们这里学一下. 我在网上结合了非常多资料,这里自己总结一下. 首先说.JAVA和C++中都有枚举类型. 假设一个变量你须要几种可 ...
- <转载>使CSS文字图片div元素居中方法之水平居中的几个方法
文字居中,文字垂直居中水平居中,图片居中,图片水平居中垂直居中,块元素垂直居中?当我们在做前端开发是时候关于css居中的问题是很常见的.情 况有很多种,不同的情况又有不同的解决方式.水平居中的方式解决 ...
- python for else
http://blog.sina.com.cn/s/blog_5357c0af01013mwn.html raw_input() 与 input() __ Python http://www.cnbl ...
- Ubuntu 14.04LTS Gnome GUI初体验及163更新源配制
Ubuntu 14.04 LTS于前天(2014.4.17)公布, 我今天将我的系统升级到最新, 体验了下最新的UI系统. 我选择了Ubuntu Gnome 的GUI界面.我曾经的系统是12.04lt ...
- POJ 1955 Rubik's Cube
暴力模拟就好了.... vim写代码真费事,手都写酸了... Rubik's Cube Time Limit: 1000MS Memory Limit: 30000K Total Submissi ...
- linux安装Tesseract-OCR
安装Tesseract-OCR 1. leptonica 需要源码编译安装http://www.leptonica.org/ leptonica 包: leptonica-1.73.tar.gz 解 ...