greatest common divisor(最大公约数)

1.欧几里得算法

欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。

其计算原理依赖于下面的定理:
两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。
最大公约数(greatest common divisor)缩写为gcd。
gcd(a,b) = gcd(b,a mod b) (不妨设a>b 且r=a mod b ,r不为0),以此辗转相除得到最终结果。
 
证明:
a可以表示成a = kb + r(a,b,k,r皆为正整数,且r<b),则r = a mod b
假设d是a,b的一个公约数,记作d|a,d|b,即a和b都可以被d整除。
而r = a - kb,两边同时除以d,r/d=a/d-kb/d=m,等式左边可知m为整数,因此d|r
因此d也是b,a mod b的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
 
代码实现:
C++:
int gcd(int a,int b){
if (a < b)
std::swap(a, b);
return b == ? a : gcd(b, a % b);
}

Python:

函数内递归

 def gcd(a, b):
if a < b:
a, b = b, a
while b != 0:
a,b = b,a%b
return a

函数递归:

 def gcd(a, b):
if b == 0:
return a
return gcd(b, a % b)

2.Stein算法:

欧几里德算法是计算两个数最大公约数的传统算法,无论从理论还是从实际效率上都是很好的。但是却有一个致命的缺陷,这个缺陷在素数比较小的时候一般是感觉不到的,只有在大素数时才会显现出来。
一般实际应用中的整数很少会超过64位(当然现在已经允许128位了),对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。
 
证明:
由J. Stein 1961年提出的Stein算法很好的解决了欧几里德算法中的这个缺陷,Stein算法只有整数的移位和加减法,为了说明Stein算法的正确性,首先必须注意到以下结论:
gcd(a,a)=a,也就是一个数和其自身的公约数仍是其自身。
gcd(ka,kb)=k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换。特殊地,当k=2时,说明两个偶数的最大公约数必然能被2整除。
当k与b互为质数,gcd(ka,b)=gcd(a,b),也就是约掉两个数中只有其中一个含有的因子不影响最大公约数。特殊地,当k=2时,说明计算一个偶数和一个奇数的最大公约数时,可以先将偶数除以2。
 
代码实现:
Python:
 def gcd_Stein(a, b):
if a < b:
a, b = b, a
if (0 == b):
return a
if a % 2 == 0 and b % 2 == 0:
return 2 * gcd_Stein(a/2, b/2)
if a % 2 == 0:
return gcd_Stein(a / 2, b)
if b % 2 == 0:
return gcd_Stein(a, b / 2) return gcd_Stein((a + b) / 2, (a - b) / 2)
 
 
 

Python 最大公约数的欧几里得算法及Stein算法的更多相关文章

  1. 最小公约数(欧几里得算法&amp;&amp;stein算法)

    求最小公约数,最easy想到的是欧几里得算法,这个算法也是比較easy理解的,效率也是非常不错的. 也叫做辗转相除法. 对随意两个数a.b(a>b).d=gcd(a.b),假设b不为零.那么gc ...

  2. PYTHON调用C接口(基于Ctypes)实现stein算法最大公约数的计算

    相关环境配置 mingw,选择相应的32位.64位的版本,主要用于编译动态链接库dll文件,可用vs替代,这里我选择轻量级的mingw windows64位地址:https://sourceforge ...

  3. Java数据结构与算法之---求两个数的最大公约数(欧几里得算法)

    一个简单的小算法来获取两个数的最大公约数, public class Test { public static void main(String[] args) { long result = gcd ...

  4. 《Python编程从0到1》笔记3——欧几里得算法

    本节以欧几里得算法(这是人类历史上最早记载的算法)为示例,向读者展示注释.文档字符串(docstring).变量.循环.递归.缩进以及函数定义等Python语法要素.    欧几里得算法:“在数学中, ...

  5. 『扩展欧几里得算法 Extended Euclid』

    Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...

  6. POJ 1601 拓展欧几里得算法

    学习链接:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 先来学习一下什么是欧几里得算法: 欧几里得原理是:两个整数 ...

  7. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

  8. python常用算法(6)——贪心算法,欧几里得算法

    1,贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的的时在某种意义上的局部最优解. 贪心算法并不保证会得到最优解,但 ...

  9. 欧几里得算法求最大公约数(gcd)

    关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...

随机推荐

  1. 【转】C++中this指针的用法详解

    1.this指针的用处 一个对象的this指针并不是对象本身的一部分,不会影响sizeof(对象)的结果.this作用域是在类内部,当在类的非静态成员函数中访问类的非静态成员的时候,编译器会自动将对象 ...

  2. poj3190区间类贪心+优先队列

    题意:每个奶牛产奶的时间为A到B,每个奶牛产奶时要占用一间房子,问n头奶牛产奶共需要多少房子,并输出每头奶牛用哪间房子 分析:这题就是一个裸的贪心,将奶牛按开始时间进行排序即可,但考虑一下数据范围,我 ...

  3. java 自动备份MySQL 数据库(转载)

    1 package com.learn4j.bat; public class Backup { private String user_name;// 数据库用户名 private String u ...

  4. MySQL协议分析2

    MySQL协议分析 议程 协议头 协议类型 网络协议相关函数 NET缓冲 VIO缓冲 MySQL API 协议头 ● 数据变成在网络里传输的数据,需要额外的在头部添加4 个字节的包头. . packe ...

  5. Datetime.GetDateTimeFormats()的集合

    Asp.net中的日期处理函数//2007年4月24日this.TextBox6.Text = System.DateTime.Now.ToString("D");//2007-4 ...

  6. IIS Default Web Site : The service did not response to the start or control request in a timely fashion

    IIS Default Web Site无法启动,提示错误:The service did not response to the start or control request in a time ...

  7. iOS开发——Xcode快捷键

    1.共用的一些方法 Command + A: 全选Command + C: 复制Command + V: 粘贴Command + X: 剪切Command + Z: 撤销Shift + Command ...

  8. JQuery Easy Ui dataGrid 数据表格 -->转

    转至: http://www.cnblogs.com/cnjava/archive/2013/01/21/2869876.html#events 数据表格 - DataGrid 内容 概况 使用方法 ...

  9. layout_toLeftOf = “@id/XX” 提示找不到该id的控件

    调布局的时候,需要把一个控件A放在另一个控件B的左边,我的xml布局文件是按照顺序从左到右定义的控件,所以先定义的控件A,然后控件B,在控件A的属性中,定义 android:layout_toLeft ...

  10. C++指针与const

    在C++中,const修饰符一般用于修饰常量.常量在定义的时候必须初始化,而且值一旦定义之后就不能修改,这样就能保证常量的值在程序运行过程中不会发生变换. 1.指向const对象的指针 指向const ...