题目链接:hdu 4778 Rabbit Kingdom

题目大意:Alice和Bob玩游戏,有一个炉子。能够将S个同样颜色的宝石换成一个魔法石。如今有B个包,每一个包里有若干个宝石,给出宝石的颜色。如今由Alice開始,两人轮流选取一个包的宝石放入炉中,每当获得一个魔法石时,能够额外获得一次机会再选一个包放入。两人均依照自己的最优策略。问说最后Alice的魔法石-Bob的魔法石是多少。

解题思路:状态压缩,221,对于每次移动到下一个状态,假设获得的魔法石g非零。则说明下一个状态还是自己在取。则要选择最优的。假设g为0。则说明下一个状态不是自己在取,则要取尽量小的,相应也就是相反数尽量大的。

C++ 记忆化版
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxb = 21;
const int maxn = 1<<21;
const int maxg = 10;
const int INF = 0x3f3f3f3f; int G, B, S;
int c[maxb+5][maxg], s[maxn+5][maxg];
int v[maxn+5], dp[maxn+5]; void init () {
int t, a;
memset(c, 0, sizeof(c));
memset(v, 0, sizeof(v)); for (int i = 0; i < B; i++) {
scanf("%d", &t);
for (int j = 0; j < t; j++) {
scanf("%d", &a);
c[i][a]++;
}
} for (int i = 0; i < (1<<B); i++) {
for (int j = 0; j < B; j++) { if (i&(1<<j))
continue; int e = i|(1<<j); if (v[e])
continue; for (int k = 1; k <= G; k++)
s[e][k] = (s[i][k] + c[j][k]) % S;
}
}
} int add (int k, int x) {
int ans = 0;
for (int i = 1; i <= G; i++)
ans += (s[k][i] + c[x][i]) / S;
return ans;
} int dfs (int u) { if (u + 1 == (1<<B))
return 0; if (v[u])
return dp[u]; int up = -INF;
int lower = INF; for (int i = 0; i < B; i++) {
if (u&(1<<i))
continue; int g = add (u, i); if (g)
up = max(up, dfs(u|(1<<i))+g);
else
lower = min(lower, dfs(u|1<<i));
}
v[u] = 1;
return dp[u] = max(up, -lower);
} int main () {
while (scanf("%d%d%d", &G, &B, &S) == 3 && G + B + S) {
init();
memset(v, 0, sizeof(v));
printf("%d\n", dfs(0));
}
return 0;
}
C++ 递推版
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxb = 21;
const int maxn = 1<<21;
const int maxg = 10;
const int INF = 0x3f3f3f3f; int G, B, S;
int c[maxb+5][maxg], s[maxn+5][maxg];
int v[maxn+5], dp[maxn+5]; void init () {
int t, a;
memset(c, 0, sizeof(c));
memset(v, 0, sizeof(v)); for (int i = 0; i < B; i++) {
scanf("%d", &t);
for (int j = 0; j < t; j++) {
scanf("%d", &a);
c[i][a]++;
}
} for (int i = 0; i < (1<<B); i++) {
for (int j = 0; j < B; j++) { if (i&(1<<j))
continue; int e = i|(1<<j); if (v[e])
continue; for (int k = 1; k <= G; k++)
s[e][k] = (s[i][k] + c[j][k]) % S;
}
}
} int add (int k, int x) {
int ans = 0;
for (int i = 1; i <= G; i++)
ans += (s[k][i] + c[x][i]) / S;
return ans;
} int solve () {
int e = (1<<B) - 1;
memset(dp, -INF, sizeof(dp));
dp[e] = 0; for (int u = e; u >= 0; u--) { for (int i = 0; i < B; i++) {
if ((u&(1<<i)) == 0)
continue; int ui = u-(1<<i);
int g = add(ui, i); if (g)
dp[ui] = max(dp[ui], dp[u] + g);
else
dp[ui] = max(dp[ui], -dp[u]);
}
}
return dp[0];
} int main () {
while (scanf("%d%d%d", &G, &B, &S) == 3 && G + B + S) {
init();
printf("%d\n", solve());
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

hdu 4778 Rabbit Kingdom(减少国家)的更多相关文章

  1. HDU 4777 Rabbit Kingdom(树状数组)

    HDU 4777 Rabbit Kingdom 题目链接 题意:给定一些序列.每次询问一个区间,求出这个区间和其它数字都互质的数的个数 #include <cstdio> #include ...

  2. HDU 4777 Rabbit Kingdom (2013杭州赛区1008题,预处理,树状数组)

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. HDU 4777 Rabbit Kingdom --容斥原理+树状数组

    题意: 给一个数的序列,询问一些区间,问区间内与区间其他所有的数都互质的数有多少个. 解法: 直接搞有点难, 所谓正难则反,我们求区间内与其他随便某个数不互质的数有多少个,然后区间长度减去它就是答案了 ...

  4. HDU 4777 Rabbit Kingdom 树状数组

    分析:找到每一个点的左边离他最近的不互质数,记录下标(L数组),右边一样如此(R数组),预处理 这个过程需要分解质因数O(n*sqrt(n)) 然后离线,按照区间右端点排序 然后扫一遍,对于当前拍好顺 ...

  5. HDU 4777 Rabbit Kingdom

    素因子分解,树状数组.$ACM/ICPC$ $2013$杭州区域赛$H$题. 首先需要处理出数字$a[i]$左边最远到$L[i]$,右边最远到$R[i]$区间内所有数字都与$a[i]$互质. 那么对于 ...

  6. hdu 4778 Gems Fight! 博弈+状态dp+搜索

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4102743.html 题目链接:hdu 4778 Gems Fight! 博弈+状态dp+搜 ...

  7. hdu 5030 Rabbit&#39;s String(后缀数组&amp;二分法)

    Rabbit's String Time Limit: 40000/20000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  8. HDU 4778 状压DP

    一看就是状压,由于是类似博弈的游戏.游戏里的两人都是绝对聪明,那么先手的选择是能够确定最终局面的. 实际上是枚举最终局面情况,0代表是被Bob拿走的,1为Alice拿走的,当时Alice拿走且满足变换 ...

  9. hdu 4778 Gems Fight! 状压dp

    转自wdd :http://blog.csdn.net/u010535824/article/details/38540835 题目链接:hdu 4778 状压DP 用DP[i]表示从i状态选到结束得 ...

随机推荐

  1. HTTPS 中双向认证SSL 协议的具体过程

    HTTPS 中双向认证SSL 协议的具体过程: 这里总结为详细的步骤: ① 浏览器发送一个连接请求给安全服务器.② 服务器将自己的证书,以及同证书相关的信息发送给客户浏览器.③ 客户浏览器检查服务器送 ...

  2. SOA,不看你永远不知道的事

    你买不来SOA,只能设计自己的SOA. SOA不是新东西 SOA没有引入新概念,它是个把现有概念和实践放到一起,用于特定需求集的范式.你甚至可以说SOA别的什么都 不是,就是将实用主义和头脑风暴运用到 ...

  3. UVA 10603 Fill(正确代码尽管非常搓,网上很多代码都不能AC)

    题目链接:option=com_onlinejudge&Itemid=8&page=show_problem&problem=1544">click here~ ...

  4. hdu 4885 TIANKENG’s travel(bfs)

    题目链接:hdu 4885 TIANKENG's travel 题目大意:给定N,L,表示有N个加油站,每次加满油能够移动距离L,必须走直线,可是能够为斜线.然后给出sx,sy,ex,ey,以及N个加 ...

  5. libvirt(virsh命令总结)

    virsh回车进入交互式界面: version pwd hostname 显示本节点主机名 nodeinfo  显示节点信息 list --all 显示所有云主机 7种状态: running  运行中 ...

  6. C语言中关于scanf函数的用法

    scanf()函数的控制串 函数名: scanf 功 能: 执行格式化输入 用 法: int scanf(char *format[,argument,...]); scanf()函数是通用终端格式化 ...

  7. tomcat启动后ids页面无法访问

    修改servers-->tomcat6.0-->server.xml <Context docBase="/tds7030-web" path="&qu ...

  8. Jquery moblie中的分栏布局

    大家好,很高兴又与大家见面了,今天我要给大家展示的是自己对jquery  moblie中网格布局的理解.可能不是尽善尽美,希望大家多多体谅! 在jquery moblie中有两种布局,一种是表格布局( ...

  9. [034] 微信公众帐号开发教程第10篇-解析接口中的消息创建时间CreateTime(转)

    从微信公众平台的消息接口指南中能够看出,每种类型的消息定义中,都包括有CreateTime參数,它表示消息的创建时间,例如以下图所看到的: 上图是消息接口指南中4.1-文本消息的定义.注意Create ...

  10. 令牌桶在数据通信QoS流量监管中的应用

    令牌桶(Tocken Bucket,以下简称TB)在流量监管(以下简称CAR)功能中完成对流量进行限速的作用.流量监管主要是应用与网络边缘,从而保证核心设备的正常数据处理. 在流量监管的处理过程中,首 ...