POJ2187(旋转卡壳)
Beauty Contest
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 35459 | Accepted: 10978 |
Description
Even though Bessie travels directly in a straight line between pairs of farms, the distance between some farms can be quite large, so she wants to bring a suitcase full of hay with her so she has enough food to eat on each leg of her journey. Since Bessie refills her suitcase at every farm she visits, she wants to determine the maximum possible distance she might need to travel so she knows the size of suitcase she must bring.Help Bessie by computing the maximum distance among all pairs of farms.
Input
* Lines 2..N+1: Two space-separated integers x and y specifying coordinate of each farm
Output
Sample Input
4
0 0
0 1
1 1
1 0
Sample Output
2
Hint
//2016.10.2
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define N 50005
#define eps 1e-8 using namespace std; int n; struct point
{
double x, y;
point(){}
point(double a, double b):x(a), y(b){}
point operator-(point a){//向量减法
return point(x-a.x, y-a.y);
}
double operator*(point a){//向量叉积
return x*a.y-y*a.x;
}
bool operator<(const point a)const{
if(fabs(x-a.x)<eps)return y<a.y;//浮点数的判等不能直接用‘==’直接比较
return x<a.x;
}
double len2(){//向量模的平方
return x*x+y*y;
}
}p[N]; struct polygon
{
int n;
point p[N];
}pg; double cp(point o, point a, point b)//向量oa,ob叉积
{
return (a-o)*(b-o);
} void Convex(int &n)//Graham扫描法
{
sort(p, p+n);
int top, m;
pg.p[] = p[]; pg.p[] = p[]; top = ;
for(int i = ; i < n; i++)//从前往后扫
{
while(top> && cp(p[i], pg.p[top], pg.p[top-])>=)top--;
pg.p[++top] = p[i];
}
m = top;
pg.p[++top] = p[n-];
for(int i = n-; i >= ; i--)//从后往前扫
{
while(top>m && cp(p[i], pg.p[top], pg.p[top-])>=)top--;
pg.p[++top] = p[i];
}
pg.n = top;
} int rotating_calipers()//旋转卡壳
{
int v = ;n = pg.n;
double ans = ;
pg.p[n] = pg.p[];
for(int u = ; u < n; u++)//旋转
{
while(cp(pg.p[u],pg.p[u+],pg.p[v+])>cp(pg.p[u],pg.p[u+],pg.p[v]))v = (v+)%n;
ans = max(ans, max((pg.p[u]-pg.p[v]).len2(), (pg.p[u+]-pg.p[v+]).len2()));
}
return ans;
} int main()
{
int n;
while(scanf("%d", &n)!=EOF && n)
{
for(int i = ; i < n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y);
Convex(n);
int ans = rotating_calipers();
printf("%d\n", ans);
} return ;
}
POJ2187(旋转卡壳)的更多相关文章
- POJ2187 旋转卡壳 求最长直径
给定平面上的一些散点集,求最远两点距离的平方值. 题解: 旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离 #pragma GCC optimize(2) #pragma G++ optimi ...
- POJ2187 Beauty Contest (旋转卡壳算法 求直径)
POJ2187 旋转卡壳算法如图 证明:对于直径AB 必然有某一时刻 A和B同时被卡住 所以旋转卡壳卡住的点集中必然存在直径 而卡壳过程显然是O(n)的 故可在O(n)时间内求出直径 凸包具有良好的性 ...
- poj2187 Beauty Contest(旋转卡壳)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Beauty Contest Time Limit: 3000MS Memor ...
- [POJ2187][BZOJ1069]旋转卡壳
旋转卡壳 到现在依然不确定要怎么读... 以最远点对问题为例,枚举凸包上的两个点是最简单的想法,时间复杂度O(n2) 我们想象用两条平行线卡着这个凸包,当其中一个向某个方向旋转的时候另一个显然也是朝同 ...
- [USACO2003][poj2187]Beauty Contest(凸包+旋转卡壳)
http://poj.org/problem?id=2187 题意:老题了,求平面内最远点对(让本渣默默想到了悲剧的AHOI2012……) 分析: nlogn的凸包+旋转卡壳 附:http://www ...
- POJ2187 Beauty Contest(旋转卡壳)
嘟嘟嘟 旋转卡壳模板题. 首先求出凸包. 然后\(O(n ^ 2)\)的算法很好想,但那就不叫旋转卡壳了. 考虑优化:直观的想是在枚举点的时候,对于第二层循环用二分或者三分优化,但实际上两点距离是不满 ...
- POJ2187(凸包+旋转卡壳)
这道题目的大意是给出一组二维空间的顶点,计算其中距离最远的两个顶点之间的距离. 先说明凸包的概念和求法. 定义:对于多边形P,若将P中任意的两个点(包含边上)用一条线段连接,线段都落于该多边形中(含边 ...
- POJ-2187 Beauty Contest,旋转卡壳求解平面最远点对!
凸包(旋转卡壳) 大概理解了凸包A了两道模板题之后在去吃饭的路上想了想什么叫旋转卡壳呢?回来无聊就搜了一下,结果发现其范围真广. 凸包: 凸包就是给定平面图上的一些点集(二维图包),然后求点集组成的 ...
- 算法复习——凸包加旋转卡壳(poj2187)
题目: Description Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest ...
随机推荐
- Nexus搭建私服 学习
为什么要搭建nexus私服 因为有些公司不提供外网给项目组人员,因此就不能使用maven访问远程的仓库地址,所以,有必要再局域网里找一台有外网权限的机器.搭建nexus私服,然后开发人员连接到这台私服 ...
- 简单制作 OS X Yosemite 10.10 正式版U盘USB启动安装盘方法教程 (全新安装 Mac 系统)
原文地址: http://www.iplaysoft.com/osx-yosemite.html 简单制作 Mac OS X Yosemite 正式版 USB 启动盘的方法教程: 其实制作 OS X ...
- ecos资源探测器
两种类型的资源探测器 xml文件资源探测器 目录资源探测器 系统内置的资源探测器(核心) 数据库定义目录资源探测器 -base_application_datable 关注dbschema servi ...
- 转载:org.apache.catalina.util.DefaultAnnotationProcessor cannot be cast to org.apache.Annotation
转载:org.apache.catalina.util.DefaultAnnotationProcessor cannot be cast to org.apache.Annotation (2012 ...
- NSString之Format
三点用法总结: 类型转换:基本类型到对象类型 需要调用NSString的fotmat方法 NSString *location = [NSString stringWithFormat:@&quo ...
- 【安卓手机通用】android adb shell 命令大全
浏览:3116 | 更新:2013-10-17 17:05 | 标签:安卓 android 一.[什么是shell] Linux系统的shell作为操作系统的外壳,为用户提供使用操作系统的接口.它是命 ...
- mysql迁移-----拷贝mysql目录/load data/mysqldump/into outfile
摘要:本文简单介绍了mysql的三种备份,并解答了有一些实际备份中会遇到的问题.备份恢复有三种(除了用从库做备份之外), 直接拷贝文件,load data 和 mysqldump命令.少量数据使用my ...
- Android 5.0之前屏幕截图的方法
截图的几种方法 Android获取屏幕截图主要有以下三种方法 1.通过view.getDrawingCache()获取指定View的绘制缓存来实现截屏. 这种方式Android 5.0之前也可以,且不 ...
- Java面向对象设计
1.少了程序入口会在输出的地方报这个错: Syntax error, insert "... VariableDeclaratorId" to complete FormalPar ...
- 485. 找出二进制串中连续的1的个数 Max Consecutive Ones
Given a binary array, find the maximum number of consecutive 1s in this array. Example 1: Input: [1, ...