Mahout推荐算法ItemBased
Mahout推荐的ItemBased
一、 算法原理
(一) 基本的
下面的例子,参见图评分矩阵:表现user,归类为item.
图(1)
该算法的原理:
1. 计算Item之间的相似度。
2. 对用户U做推荐
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVleWVkZWFp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
公式(一)
Map tmp ;
Map tmp1 ;
for(item a in userRatedItems){
rate =userforItemRate(a)
ListsimItem =getSimItem(a);
For(Jin simItem){
Item b =j;
Simab=sim(a,b);
Tmp.add(b,Tmp .get(b)+simab*rate)
tmp1.add(b, tmp1.get(b)+simab)
}
}
Maptmp2=temp/temp1
Sortbyval(tmp2)
return topK(tmp2,k)
(二) 相似度计算
1. Cos相似度
公式(二)
2. 皮尔逊相似度
公式(三)
3. 调整的cos相似度
公式(四)
(三) 採样
计算全量的itemPair之间的相似度耗费大量的时间。也是没有必要的,所以须要採样,减小计算量。
二、 单机模式实现
(一) 候选Item搜索
计算全部Item Pair之间的相似度在单机模式下是不现实的,须要在海量的候选集中搜索出一部分最有可能的候选集用于计算。
Mahout提供了4中候选Item选择策略。
1. AllSimilarItemsCandidateItemsStrategy
|
@Override FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException { FastIDSet candidateItemIDs = new FastIDSet(); for (long itemID : preferredItemIDs) { candidateItemIDs.addAll(similarity.allSimilarItemIDs(itemID)); } candidateItemIDs.removeAll(preferredItemIDs); return candidateItemIDs; } |
2. AllUnknownItemsCandidateItemsStrategy
|
@Override protected FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException { FastIDSet possibleItemIDs = new FastIDSet(dataModel.getNumItems()); LongPrimitiveIterator allItemIDs = dataModel.getItemIDs(); while (allItemIDs.hasNext()) { possibleItemIDs.add(allItemIDs.nextLong()); } possibleItemIDs.removeAll(preferredItemIDs); return possibleItemIDs; } |
3. PreferredItemsNeighborhoodCandidateItemsStrategy
|
@Override protected FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException { FastIDSet possibleItemsIDs = new FastIDSet(); for (long itemID : preferredItemIDs) { PreferenceArray itemPreferences = dataModel.getPreferencesForItem(itemID); int numUsersPreferringItem = itemPreferences.length(); for (int index = 0; index < numUsersPreferringItem; index++) { possibleItemsIDs.addAll(dataModel.getItemIDsFromUser(itemPreferences.getUserID(index))); } } possibleItemsIDs.removeAll(preferredItemIDs); return possibleItemsIDs; } |
4. SamplingCandidateItemsStrategy
|
private static int computeMaxFrom(int factor, int numThings) { if (factor == NO_LIMIT_FACTOR) { return MAX_LIMIT; } long max = (long) (factor * (1.0 + Math.log(numThings) / LOG2)); return max > MAX_LIMIT ? MAX_LIMIT : (int) max; } @Override protected FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException { LongPrimitiveIterator preferredItemIDsIterator = new LongPrimitiveArrayIterator(preferredItemIDs); if (preferredItemIDs.length > maxItems) { double samplingRate = (double) maxItems / preferredItemIDs.length; // log.info("preferredItemIDs.length {}, samplingRate {}", preferredItemIDs.length, samplingRate); preferredItemIDsIterator = new SamplingLongPrimitiveIterator(preferredItemIDsIterator, samplingRate); } FastIDSet possibleItemsIDs = new FastIDSet(); while (preferredItemIDsIterator.hasNext()) { long itemID = preferredItemIDsIterator.nextLong(); PreferenceArray prefs = dataModel.getPreferencesForItem(itemID); int prefsLength = prefs.length(); if (prefsLength > maxUsersPerItem) { Iterator<Preference> sampledPrefs = new FixedSizeSamplingIterator<Preference>(maxUsersPerItem, prefs.iterator()); while (sampledPrefs.hasNext()) { addSomeOf(possibleItemsIDs, dataModel.getItemIDsFromUser(sampledPrefs.next().getUserID())); } } else { for (int i = 0; i < prefsLength; i++) { addSomeOf(possibleItemsIDs, dataModel.getItemIDsFromUser(prefs.getUserID(i))); } } } possibleItemsIDs.removeAll(preferredItemIDs); return possibleItemsIDs; } private void addSomeOf(FastIDSet possibleItemIDs, FastIDSet itemIDs) { if (itemIDs.size() > maxItemsPerUser) { LongPrimitiveIterator it = new SamplingLongPrimitiveIterator(itemIDs.iterator(), (double) maxItemsPerUser / itemIDs.size()); while (it.hasNext()) { possibleItemIDs.add(it.nextLong()); } } else { possibleItemIDs.addAll(itemIDs); } } |
(二) 估值
|
protected float doEstimatePreference(long userID, PreferenceArray preferencesFromUser, long itemID) throws TasteException { double preference = 0.0; double totalSimilarity = 0.0; int count = 0; double[] similarities = similarity.itemSimilarities(itemID, preferencesFromUser.getIDs()); for (int i = 0; i < similarities.length; i++) { double theSimilarity = similarities[i]; if (!Double.isNaN(theSimilarity)) { // Weights can be negative! preference += theSimilarity * preferencesFromUser.getValue(i); totalSimilarity += theSimilarity; count++; } } // Throw out the estimate if it was based on no data points, of course, but also if based on // just one. This is a bit of a band-aid on the 'stock' item-based algorithm for the moment. // The reason is that in this case the estimate is, simply, the user's rating for one item // that happened to have a defined similarity. The similarity score doesn't matter, and that // seems like a bad situation. if (count <= 1) { return Float.NaN; } float estimate = (float) (preference / totalSimilarity); if (capper != null) { estimate = capper.capEstimate(estimate); } return estimate; } |
(三) 推荐
1. 依据历史评分列表推荐
这样的推荐方式依据用户之前产生过评分的item做推荐。推荐结果依照预计值的大小排序。
|
@Override public List<RecommendedItem> recommend(long userID, Preconditions.checkArgument(howMany >= 1, "howMany must be at least 1"); log.debug("Recommending items for user ID '{}'", userID); PreferenceArray preferencesFromUser = getDataModel().getPreferencesFromUser(userID); if (preferencesFromUser.length() == 0) { return Collections.emptyList(); } FastIDSet possibleItemIDs = getAllOtherItems(userID, preferencesFromUser); TopItems.Estimator<Long> estimator = new Estimator(userID, preferencesFromUser); List<RecommendedItem> topItems = TopItems.getTopItems(howMany, possibleItemIDs.iterator(), rescorer, estimator); log.debug("Recommendations are: {}", topItems); return topItems; } |
2. Because推荐
这样的推荐方式用于实时推荐。
|
@Override public List<RecommendedItem> recommendedBecause(long userID, long itemID, int howMany) throws TasteException { Preconditions.checkArgument(howMany >= 1, "howMany must be at least 1"); DataModel model = getDataModel(); TopItems.Estimator<Long> estimator = new RecommendedBecauseEstimator(userID, itemID); PreferenceArray prefs = model.getPreferencesFromUser(userID); int size = prefs.length(); FastIDSet allUserItems = new FastIDSet(size); for (int i = 0; i < size; i++) { allUserItems.add(prefs.getItemID(i)); } allUserItems.remove(itemID); return TopItems.getTopItems(howMany, allUserItems.iterator(), null, estimator); } //估值方法 @Override public double estimate(Long itemID) throws TasteException { Float pref = getDataModel().getPreferenceValue(userID, itemID); if (pref == null) { return Float.NaN; } double similarityValue = similarity.itemSimilarity(recommendedItemID, itemID); return (1.0 + similarityValue) * pref; } |
三、 MapReduce模式实现
(一) 将偏好文件转换成评分矩阵(PreparePreferenceMatrixJob)
(二) 计算共现矩阵相似度(RowSimilarityJob)
(三) 挑选最相似的K个Item
(四) 用户偏好向量和相似降维后的共现矩阵做乘法
(五) 过滤制定的user\titem
(六) 生成终于的推荐结果
四、 实例演示
1. 单机模式
1) 批量推荐
|
DataModel dataModel = ItemSimilarity similarity = new PearsonCorrelationSimilarity(dataModel); ItemBasedRecommender recommender = new GenericItemBasedRecommender(dataModel,similarity ); System.out.println(recommender.recommend(10, 10)); |
2) Because推荐
|
DataModel dataModel = new FileDataModel(new File("p/pereference")); ItemSimilarity similarity = new PearsonCorrelationSimilarity(dataModel); ItemBasedRecommender recommender = new GenericItemBasedRecommender(dataModel,similarity ); System.out.println(recommender.recommendedBecause(10, 10328, 100)); |
2. MapReduce模式
API
|
org.apache.mahout.cf.taste.hadoop.item.RecommenderJob.main(args) |
|
|
--input |
偏好数据路径,文本文件。 格式 userid\t itemid\t preference |
|
--output |
推荐结果路径 |
|
-- numRecommendations |
推荐个数 |
|
--usersFile |
须要做出推荐的user,默认所有做推荐 |
|
--itemsFile |
须要做出推荐的item,默认所有做推荐 |
|
--filterFile |
文件格式文本。userid\itemid 。目的是给userid的用户不要推荐itemid的item |
|
--booleanData |
是否是布尔数据 |
|
--maxPrefsPerUser |
最大偏好值 |
|
--minPrefsPerUser |
最小偏好值 |
|
--maxSimilaritiesPerItem |
给每个Item计算最多的相似item数目 |
|
--maxPrefsPerUserInItemSimilarity |
ItemSimilarity预计item相似度时,对每个user最多偏好数目 |
|
--similarityClassname |
SIMILARITY_PEARSON_CORRELATION、SIMILARITY_COOCCURRENCE、SIMILARITY_LOGLIKELIHOOD、SIMILARITY_TANIMOTO_COEFFICIENT、SIMILARITY_CITY_BLOCK、SIMILARITY_COSINE、SIMILARITY_EUCLIDEAN_DISTANCE |
|
--threshold |
删除低于该阈值的item对 |
|
--outputPathForSimilarityMatrix |
指定生成的item相似矩阵路径,文本文件,格式为 itemA \t itemB \t 相似值 |
实例
|
String [] args ={"--input","p", "--output","recommender", "--numRecommendations","10", "--outputPathForSimilarityMatrix","simMatrix", "--similarityClassname","SIMILARITY_PEARSON_CORRELATION"} org.apache.mahout.cf.taste.hadoop.item.RecommenderJob.main(args); |
五、 參考文献
1. M.Deshpandeand G. Karypis. Item-based top-n recommendation algorithms.
2. B.M.Sarwar, G. Karypis, J.A. Konstan, and J. Reidl. Item-based collaborativefiltering recommendation algorithms.
3. Item-based collaborative filtering
4. Accuratelycomputing running variance
版权声明:本文博主原创文章,博客,未经同意不得转载。
Mahout推荐算法ItemBased的更多相关文章
- Mahout推荐算法之ItemBased
Mahout推荐之ItemBased 一. 算法原理 (一) 基本原理 如下图评分矩阵所示:行为user,列为item. 图(1) 该算法的原理: 1. 计算Item之间的相似度. 2. ...
- Mahout推荐算法API详解
转载自:http://blog.fens.me/mahout-recommendation-api/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, ...
- Mahout推荐算法基础
转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相 ...
- 转】Mahout推荐算法API详解
原博文出自于: http://blog.fens.me/mahout-recommendation-api/ 感谢! Posted: Oct 21, 2013 Tags: itemCFknnMahou ...
- Mahout推荐算法之SlopOne
Mahout推荐算法之SlopOne 一. 算法原理 有别于基于用户的协同过滤和基于item的协同过滤,SlopeOne采用简单的线性模型估计用户对item的评分.如下图,估计UserB对 ...
- [转]Mahout推荐算法API详解
Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeepe ...
- Mahout推荐算法API具体解释【一起学Mahout】
阅读导读: 1.mahout单机内存算法实现和分布式算法实现分别存在哪些问题? 2.算法评判标准有哪些? 3.什么会影响算法的评分? 1. Mahout推荐算法介绍 Mahout推荐算法,从数据处理能 ...
- 从源代码剖析Mahout推荐引擎
转载自:http://blog.fens.me/mahout-recommend-engine/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pi ...
- 转】从源代码剖析Mahout推荐引擎
原博文出自于: http://blog.fens.me/mahout-recommend-engine/ 感谢! 从源代码剖析Mahout推荐引擎 Hadoop家族系列文章,主要介绍Hadoop家族产 ...
随机推荐
- Window平台搭建Redis分布式缓存集群 (一)server搭建及性能測试
百度定义:Redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对很多其它.包含string(字符串).list(链表).set(集合).zset(sort ...
- Delphi对WM_NCHITTEST消息的处理
前提:WM_NCHITTEST是很重要的,只要鼠标在活动,Windows无时无刻在发这个消息进行探测. ------------------------------------------------ ...
- 动态分析maillog日志,把恶意链接直接用防火墙禁止
近期用 postfix + dovecot 搭建了一个邮件server, 被人当做垃圾邮件转发器,经过配置postfix 的黑白名单, postfix 提示成功的 REJECT 了垃圾邮件, 只是还是 ...
- poj1797(最短路小变形)
题目连接:http://poj.org/problem?id=1797 题意: 分析:dp[i]表示到达i点的过程中的最大承受重量,更新到i点时可能有多条路径,由优先队列堆出最大的那条即可. #inc ...
- 每天一个JavaScript实例-递归实现反转数组字符串
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- Drools学习笔记-01-在eclipse indgo集成Drools5.5
1.1.条件 Drools它是一个基于Java开源规则引擎.因此,使用Drools以及前需要安装在开发机器JDK周边环境,Drools5.5需要JDK版本号的1.5或者更多. 1.2.开发环境搭建 大 ...
- C++设计模式--观察员
概要 在软件构建过程中.我们须要为某些对象建立一种"通知依赖关系" --一个对象(目标对象)的状态发生改变,全部的依赖对象(观察者对象)都将得到通知.假设这种依赖关系过于紧密,将使 ...
- cocos2d-x快乐的做让人快乐的游戏3:cocos-2d 3.x中的物理世界
Cocos2d-x 3.0+ 中全新的封装的物理引擎给了开发人员最大的便捷,你不用再繁琐与各种物理引擎的细节,全然的封装让开发人员能够更快更好的将物理引擎的机制加入�到自己的游戏中,简化的设计是从2. ...
- .net数据根据字段进行分类(linq语句)
var items = List<实体>; var models = items.GroupBy(r => r.分类字段).ToDictionary(d => d.Key, d ...
- 屌丝程序猿赚钱之道之taobao 2
续上篇,之前写的案例,都是比較0基础的. 案例4: 代写情书.软文.论文等等. 这是我一个同学的真实故事. 我隔壁寝室的小王平时没事就爱谢谢博客.逛逛论坛.大二的时候接触了威客网,開始在网上 ...