1965: [Ahoi2005]SHUFFLE 洗牌

Time Limit: 3 Sec  Memory Limit: 64 MB
Submit: 408  Solved: 240
[Submit][Status][Discuss]

Description

为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。 如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示: 
 从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4 1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。 游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?

Input

有三个用空格间隔的整数,分别表示N,M,L (其中0< N ≤ 10 ^ 10 ,0 ≤ M ≤ 10^ 10,且N为偶数)。

Output

单行输出指定的扑克牌的牌面大小。

Sample Input

6 2 3

Sample Output

6

HINT

 

Source

Day1

题解:其实推下不难发现,就是求一个逗比方程的解——

\( x \cdot {2}^{M} \equiv L ( \mod N+1 ) \)

然后我就看见网上一大堆孩纸开始拿扩展欧几干起来啦——但事实上个人觉得完全没有必要——显然,他们直接扩展欧几的理由是N+1不一定是质数,但事实上求逆元可不一定非得要质数才行,具体如下,上面的方程可以转化为——

\( x = L \cdot {{2}^{M}}^{\phi(N+1)-1} \)

然后没别的啦,就是注意下数据范围,\( N\leq {10}^{10} \),所以需要用到快速乘,否则会爆数据类型

 /**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ var
n,m,p,pp,l:int64;
function Eula(x:int64):int64;
var res:int64;i:longint;
begin
res:=x;
for i:= to trunc(sqrt(x)) do
begin
if (x mod i)= then
begin
res:=(res div i)*int64(i-);
while (x mod i)= do x:=x div i;
end;
end;
if x> then res:=(res div x)*(x-);
exit(res);
end;
function ksc(x,y:int64):int64;
begin
ksc:=;x:=x mod p;
while y> do
begin
if odd(y) then ksc:=(ksc+x) mod p;
x:=(x+x) mod p;y:=y shr ;
end;
end;
function ksm(x,y:int64):int64;
begin
ksm:=;x:=x mod p;
while y> do
begin
if odd(y) then ksm:=ksc(ksm,x) mod p;
x:=ksc(x,x) mod p;y:=y shr ;
end;
end;
begin
readln(n,m,l);
p:=n+;pp:=eula(p)-;
writeln(ksc(l,ksm(ksm(,m),pp)));
end.

1965: [Ahoi2005]SHUFFLE 洗牌的更多相关文章

  1. BZOJ 1965: [Ahoi2005]SHUFFLE 洗牌( 数论 )

    对于第x个数, 下一轮它会到位置p. 当x<=N/2, p = x*2 当x>N/2, p = x*2%(N+1) 所以p = x*2%(N+1) 设一开始的位置为t, 那么t*2M%(N ...

  2. BZOJ 1965 [Ahoi2005]SHUFFLE 洗牌:快速幂 + 逆元

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1965 题意: 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两 ...

  3. bzoj 1965: [Ahoi2005]SHUFFLE 洗牌

    #include<cstdio> #include<cstring> #include<iostream> #define ll long long using n ...

  4. 1965: [Ahoi2005]SHUFFLE 洗牌 - BZOJ

    Description 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联 ...

  5. [AHOI2005] SHUFFLE 洗牌

    1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 952  Solved: 630[Submit][St ...

  6. 【bzoj1965】: [Ahoi2005]SHUFFLE 洗牌 数论-快速幂-扩展欧几里得

    [bzoj1965]: [Ahoi2005]SHUFFLE 洗牌 观察发现第x张牌 当x<=n/2 x=2x 当x>n/2 x=2x-n-1 好像就是 x=2x mod (n+1)  就好 ...

  7. 【BZOJ】【1965】SHUFFLE 洗牌

    扩展欧几里德+快速幂 每次转换位置:第x位的转移到2*x %(n+1)这个位置上 那么m次后就到了(2^m)*x %(n+1)这个位置上 那么找洗牌m次后在 l 位置上的牌就相当于解线性模方程: (2 ...

  8. bzoj1965 [Ahoi2005]SHUFFLE 洗牌

    Description 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联 ...

  9. BZOJ1965 [Ahoi2005]SHUFFLE 洗牌 快速幂

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1965 题意概括 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取 ...

随机推荐

  1. SVG的text使用

    SVG的text使用: 参考:http://www.docin.com/p-7393979.html <%@ page language="java" contentType ...

  2. return_url和notify_url的区别

    页面跳转同步通知页面特性(return_url特性) (1)   买家在支付成功后会看到一个支付宝提示交易成功的页面,该页面会停留几秒,然后会自动跳转回商户指定的同步通知页面(参数return_url ...

  3. 程序启动缓慢-原来是hbm.xml doctype的原因

    <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "h ...

  4. SVG在网页中的四种使用方式

    1,直接打开simple.svg <svg xmlns="http://www.w3.org/2000/svg" width="200" height=& ...

  5. CodeForces757B

    B. Bash's Big Day time limit per test 2 seconds memory limit per test 512 megabytes input standard i ...

  6. python之简单主机批量管理工具

    今天做了一个很简单的小项目,感受到paramiko模块的强大. 一.需求 二.简单需求分析及流程图 需求很少,我就简单地说下: 1. 主机分组可以配置文件实现(我用字典存数据的). 2. 登陆功能不做 ...

  7. BZOJ-2150部落战争(最小路径覆盖)

    2150: 部落战争 Time Limit: 10 Sec  Memory Limit: 259 MB Description lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国 ...

  8. Callback Promise Generator Async-Await 和异常处理的演进

    根据笔者的项目经验,本文讲解了从函数回调,到 es7 规范的异常处理方式.异常处理的优雅性随着规范的进步越来越高,不要害怕使用 try catch,不能回避异常处理. 我们需要一个健全的架构捕获所有同 ...

  9. 利用终端命令实现进入ntfs分区有两种方法。

    一.手动设置ubuntu自动挂载Windows分区方法:1.先用FDISK命令查看一下磁盘的UUID $sudo fdisk -l /dev/sda1 * 1 851 6835626 83 Linux ...

  10. 【LeetCode题解】数组Array

    1. 数组 直观地看,数组(Array)为一个二元组<index, value>的集合--对于每一个index,都有一个value与之对应.C语言中,以"连续的存储单元" ...