ZOJ1463:Brackets Sequence(间隙DP)
Let us define a regular brackets sequence in the following way:
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2
... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
Input
The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.
Output
Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank
line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Sample Input
1
([(]
Sample Output
()[()]
关键在于输入与输出格式。神坑。
区间dp,dp[i][j]表示
区间 i 到j之间的匹配数,区间两端的 字符能否够刚好匹配,若能够匹配 状态转移就多了一个 dp[i][j] = max(dp[i][k]+dp[k+1][j],dp[i+1][j-1]+1),若不能匹配就是dp[i][j]
= max(dp[i][j],dp[i][k]+dp[k+1][j]);
若是两端能够匹配的,并且两端匹配了导致的dp值最大那么就标记一下。mark[i][j]
= -1,否则 就mark[i][j] = k,这样把全部区间都dp一遍,回头再用DFS寻找。若是两端匹配导致值最大的 那么就直接输出这个字符标记一下,继续往更小的区间去搜索,否则 就分开两个区间搜索 [i,k] [k+1,j]
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define up(i,x,y) for(i=x;i<=y;i++)
#define down(i,x,y) for(i=x;i>=y;i--)
#define mem(a,b) memset(a,b,sizeof(a))
#define w(a) while(a)
char str[105];
int t,len,dp[105][105],mark[105][105],pos[105];
void dfs(int i,int j)
{
if(mark[i][j]==-1)
{
pos[i]=pos[j]=1;
dfs(i+1,j-1);
}
else if(mark[i][j]>=0)
{
dfs(i,mark[i][j]);
dfs(mark[i][j]+1,j);
}
return;
}
int main()
{
int l,i,j,k;
scanf("%d%*c%*c",&t);
while(t--)
{
gets(str);
len=strlen(str);
if(!len)
{
printf("\n");
if(t)
printf("\n");
continue;
}
up(i,0,len-1)
up(j,0,len-1)
{
mark[i][j]=-2;
dp[i][j]=0;
}
mem(pos,0);
i=j=l=0;
w(l<len)
{
if(i==j)
{
i++,j++;
if(j==len)
i=0,l++,j=l;
continue;
}
if((str[i]=='('&&str[j]==')')||(str[i]=='['&&str[j]==']'))
{
up(k,i,j-1)
{
if(dp[i][j]<dp[i][k]+dp[k+1][j])
{
mark[i][j]=k;
dp[i][j]=dp[i][k]+dp[k+1][j];
}
}
if(dp[i][j]<dp[i+1][j-1]+1)
{
mark[i][j]=-1;
dp[i][j]=dp[i+1][j-1]+1;
}
}
else
{
up(k,i,j-1)
{
if(dp[i][j]<dp[i][k]+dp[k+1][j])
{
mark[i][j]=k;
dp[i][j]=dp[i][k]+dp[k+1][j];
}
}
}
i++,j++;
if(j==len)
{
l++;
i=0;
j=l;
}
}
dfs(0,len-1);
up(i,0,len-1)
{
if(pos[i]==1)
printf("%c",str[i]);
else if(str[i]=='('||str[i]==')')
printf("()");
else
printf("[]");
}
printf("\n");
if(t)
{
printf("\n");
getchar();
}
} return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
ZOJ1463:Brackets Sequence(间隙DP)的更多相关文章
- poj 1141 Brackets Sequence 区间dp,分块记录
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35049 Accepted: 101 ...
- POJ 1141 Brackets Sequence(区间DP, DP打印路径)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- poj 1141 Brackets Sequence (区间dp)
题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...
- [原]POJ1141 Brackets Sequence (dp动态规划,递归)
本文出自:http://blog.csdn.net/svitter 原题:http://poj.org/problem?id=1141 题意:输出添加括号最少,并且使其匹配的串. 题解: dp [ i ...
- URAL 1183 Brackets Sequence(DP)
题目链接 题意 : 给你一串由括号组成的串,让你添加最少的括号使该串匹配. 思路 : 黑书上的DP.dp[i][j] = min{dp[i+1][j-1] (sh[i] == sh[j]),dp[i] ...
- Ural 1183 Brackets Sequence(区间DP+记忆化搜索)
题目地址:Ural 1183 最终把这题给A了.. .拖拉了好长时间,.. 自己想还是想不出来,正好紫书上有这题. d[i][j]为输入序列从下标i到下标j最少须要加多少括号才干成为合法序列.0< ...
- poj 1141 Brackets Sequence ( 区间dp+输出方案 )
http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...
- UVA 1626 Brackets sequence 区间DP
题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...
- POJ 题目1141 Brackets Sequence(区间DP记录路径)
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 27793 Accepted: 788 ...
随机推荐
- 怎样使用docker不加sudo
有时候发现docker有的指令必须加sudo才干运行,通过下面三步设置便可不加sudo直接运行docker指令: 1. 假设还没有docker group就加入一个: sudo groupadd do ...
- POJ1470 Closest Common Ancestors 【Tarjan的LCA】
非常裸的模版题,只是Tarjan要好好多拿出来玩味几次 非常有点巧妙呢,tarjan,大概就是当前结点和它儿子结点的羁绊 WA了俩小时,,,原因是,这个题是多数据的(还没告诉你T,用scanf!=EO ...
- uvaLive5713 次小生成树
uvaLive5713 修建道路使得n个点任意两点之间都可以连通,每个点有都有一定的人口,现在可以免费修一条道路, A是免费修的道路两端结点的人口之和, B的其它不是免费修道路的长度的总和 要求的是A ...
- 黄聪:Microsoft Enterprise Library 5.0 系列教程(九) Policy Injection Application Block
原文:黄聪:Microsoft Enterprise Library 5.0 系列教程(九) Policy Injection Application Block 代理对象(Proxy Object) ...
- I深搜
<span style="color:#330099;">/* I - 深搜 基础 Time Limit:1000MS Memory Limit:10000KB 64b ...
- hdu1507最大匹配
题意:给出n*m的矩阵方块,某些方块是ponds,这些方块不能出售,然后能出售的是1*2的方块 要求求出有多少块1*2的方块能够出售,并输出这些方块的坐标(specia judge) 关键是怎么建出二 ...
- 【原创】leetCodeOj --- Factorial Trailing Zeroes 解题报告
原题地址: https://oj.leetcode.com/problems/factorial-trailing-zeroes/ 题目内容: Given an integer n, return t ...
- 【HDU】5256 系列转换(上涨时间最长的序列修饰)
假设a[i]和a[j]我想的一样,满足条件的需要是 a[j] - a[i] > j - i 也就是说,a[i] - i < a[j] - j 例1 4 2 不满意,所以1和2必须有必要之间 ...
- HDU-4689 Derangement
太洗脑了: 题目意思:初始队列是1,2, 3.......n :在打乱这个队列切保证每个数字都不在原来的位置上的情况下给出一个具有+,- 的队列: 被打乱的队列 和 原来队列 对应位置的大小的关系是那 ...
- effective c++ 条款6 如果不想要就要告诉大家
这个条款应该和第五个放在一起 编译器默认生成 1 无参构造函数, 2 析构函数 3 拷贝构造函数 4 赋值预算符 当我们不需要,就要显示的告诉大家我们不需要. 方法:自己声明这个函数为private, ...