只有五行的Floyd最短路算法


现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值
为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0,具体如下。

现在回到问题:如何求任意两点之间最短路径呢?通过之前的学习我们知道通过深度或广度优先搜索可以求出两点之间的最短路径。所以进行n2遍深度或广度
优先搜索,即对每两个点都进行一次深度或广度优先搜索,便可以求得任意两点之间的最短路径。可是还有没有别的方法呢?
我们来想一想,根据我们以往的经验,如果要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中
转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是
经过两个点或者更多点中转会更短,即a->k1->k2b->或者
a->k1->k2…->k->i…->b。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原本
是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3
号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市
中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。好,下面我们将这
个问题一般化。

假如现在只允许经过1号顶点,求任意两点之间的最短路程,应该如何求呢?只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i]
[j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其
中i是1~n循环,j也是1~n循环,代码实现如下。
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if ( e[i][j] > e[i][1]+e[1][j] )
e[i][j] = e[i][1]+e[1][j];
}
}

//经过1号顶点
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if (e[i][j] > e[i][1]+e[1][j]) e[i][j]=e[i][1]+e[1][j]; //经过2号顶点
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if (e[i][j] > e[i][2]+e[2][j]) e[i][j]=e[i][2]+e[2][j];



for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
#include <stdio.h>
int main()
{
int e[10][10],k,i,j,n,m,t1,t2,t3;
int inf=99999999; //用inf(infinity的缩写)存储一个我们认为的正无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m); //初始化
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(i==j) e[i][j]=0;
else e[i][j]=inf; //读入边
for(i=1;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
} //Floyd-Warshall算法核心语句
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j] )
e[i][j]=e[i][k]+e[k][j]; //输出最终的结果
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
printf("%10d",e[i][j]);
}
printf("\n");
} return 0;
}
//Floyd-Warshall算法核心语句
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(e[i][k]<inf && e[k][j]<inf && e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
4 8
1 2 2
1 3 6
1 4 4
2 3 3
3 1 7
3 4 1
4 1 5
4 3


http://bbs.ahalei.com/thread-4554-1-1.html
只有五行的Floyd最短路算法的更多相关文章
- 【啊哈!算法】算法6:只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- 【坐在马桶上看算法】算法6:只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- 仅仅有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,例如以下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道随意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数 ...
- [转]坐在马桶上看算法:只有五行的Floyd最短路算法
此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上.同年Stephen Warshall(史蒂芬·沃舍尔)也独立发表了 ...
- Floyd最短路算法
Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...
- Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)
上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...
- Dijkstra最短路算法
Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...
- 【啊哈!算法】算法7:Dijkstra最短路算法
上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图 ...
- 【坐在马桶上看算法】算法7:Dijkstra最短路算法
上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径 ...
随机推荐
- HTTP必知必会(转)
HTTP协议作为网络传输的基本协议,有着广泛的应用.HTTP协议的完整内容很多,但是其核心知识却又简单精炼.学习者应该掌握其基本结构,并且能够举一反三.这篇文章所列的,就是在实际开发中必须知道必须掌握 ...
- .net Framework各个版本之间的发展
原文:.net Framework各个版本之间的发展 上个星期看到了.NET 4.0框架退休日期逐渐临近文章,发现自己一直在使用NET FrameWork,身为一个NET程序员,里面大概的区别自己还 ...
- Ubuntu 14.1 构造NFS
主办IP:129.1.4.189.目标计算机IP:129.1.22.96 1.运行命令:apt-get install nfs-kernel-server ; 2.运行命令:mkdir /tftpbo ...
- C#精华(文章3版本)笔记
C#精华(文章3版本) 跳转至: 导航. 搜索 文件夹 1 C#概述 2 数据类型 3 运算符和控制流 4 方法和參数 5 类 6 继承 7 接口 8 值类型(struct) 9 合式类型 10 异常 ...
- List之Distinct()
针对数组可以用List.Distinct(),可以过滤掉重复的内容. 针对对象中的某个字段只能用Distinct(IEqualityComparer<T>) 用法: 1 public ...
- NYoj 最舒适的路线
题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=711 分析:枚举速度最大的边,找出能够从S到达T的最大速度,然后求出它们的比值,与已 ...
- C语言移位运算符
位移位运算符是将数据看成二进制数,对其进行向左或向右移动若干位的运算.位移位运算符分为左移和右移两种,均为双目运算符.第一运算对象是移位对象,第二个运算对象是所移的二进制位数. 位移位运算符的运算对象 ...
- C++拷贝构造函数具体解释
一. 什么是拷贝构造函数 首先对于普通类型的对象来说,它们之间的复制是非常easy的,比如: int a = 100; int b = a; 而类对象与普通对象不同,类对象内部结构一般较为复杂,存在各 ...
- Linux_下安装MySQL
linux下mysql 最新版安装图解教程 1.查看当前安装的linux版本 命令:lsb_release -a 如下图所示 通过上图中的数据可以看出安装的版本为RedHat5.4,所以我们需要下载R ...
- GitHub Top 100 简介
主要对当前 GitHub 排名前 100 的项目做一个简单的简介, 方便初学者快速了解到当前 Objective-C 在 GitHub 的情况. GitHub 地址:https://github.co ...