CF 327E(Axis Walking-状态压缩Dp-lowbit的使用)
3 seconds
512 megabytes
standard input
standard output
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d.
Iahub has n positive integers a1, a2, ..., an. The sum of those numbers is d. Suppose p1, p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1, b2 = ap2 and so on. The array b is called a "route". There are n! different routes, one for each permutation p.
Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ j ≤ n) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.
Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those k numbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007(109 + 7).
The first line contains an integer n (1 ≤ n ≤ 24). The following line contains n integers: a1, a2, ..., an (1 ≤ ai ≤ 109).
The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.
Output a single integer — the answer of Iahub's dilemma modulo 1000000007 (109 + 7).
3
2 3 5
2
5 7
1
3
2 2 2
2
1 3
6
In the first case consider six possible orderings:
- [2, 3, 5]. Iahub will stop at position 2, 5 and 10. Among them, 5 is bad luck for him.
- [2, 5, 3]. Iahub will stop at position 2, 7 and 10. Among them, 7 is bad luck for him.
- [3, 2, 5]. He will stop at the unlucky 5.
- [3, 5, 2]. This is a valid ordering.
- [5, 2, 3]. He got unlucky twice (5 and 7).
- [5, 3, 2]. Iahub would reject, as it sends him to position 5.
In the second case, note that it is possible that two different ways have the identical set of stopping. In fact, all six possible ways have the same stops: [2, 4, 6], so there's no bad luck for Iahub.
状态压缩DP
考试时由于24*2^24 复杂度太高没写
结果答案居然就是这样
不过枚举时要直接用lowbit(i),返回min(2^k) (i)2 第k位为1
大家直接看答案就行了
忽然发现几乎没做过状压DP的题
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define F (1000000007)
#define MAXN (1<<24)
#define MAXItem (24+10)
typedef long long ll;
int n,k;
ll f[MAXN]={0},g[MAXN]={0},A[MAXN]={0},a[MAXItem]={0},b[MAXItem]={0};
int main()
{
// freopen("CF327E.in","r",stdin);
scanf("%d",&n);
For(i,n) scanf("%d",&a[i]),A[1<<i-1]=a[i];
cin>>k;
For(i,k) scanf("%d",&b[i]);Fork(i,k+1,2) b[i]=-1; //除了x=-1,x^-1!=0
Rep(i,1<<n) f[i]=f[i-(i&(-i))]+A[i&(-i)];
g[0]=1;
Rep(i,1<<n)
if (f[i]^b[1]&&f[i]^b[2]&&f[i]^b[3])
{
//for(int j=(1<<n)-1;j;j-=j&(-j)) f[i+(j&-j)
for(int j=i;j;j-=j&(-j)) g[i]=g[i]+g[i-(j&(-j))];
g[i]%=F;
} printf("%I64d",g[(1<<n)-1]%F); // while(1);
return 0;
}
CF 327E(Axis Walking-状态压缩Dp-lowbit的使用)的更多相关文章
- CodeForces 327E Axis Walking(状压DP+卡常技巧)
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub ...
- Codeforces 327E Axis Walking 状压dp
这题真的有2500分吗... 难以置信... #include<bits/stdc++.h> #define LL long long #define fi first #define s ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
随机推荐
- jq toggle1.9版本后不支持解决方案
<script type="text/javascript"> $(document).ready(function(){ $("button"). ...
- HDU 3094 A tree game 树删边游戏
叶节点SG值至0 非叶节点SG值至于它的所有子节点SG值添加1 XOR和后 #include <cstdio> #include <cstring> #include < ...
- Windows 8.1 store app 开发笔记
原文:Windows 8.1 store app 开发笔记 零.简介 一切都要从博彦之星比赛说起.今年比赛的主题是使用Bing API(主要提到的有Bing Map API.Bing Translat ...
- 多线程下HashMap的死循环是如何产生的
前言 HashMap不是线程安全的,如果需要在多线程环境中使用Map,那么我们可以使用ConcurrentHashmap. 1.举例说明: package com.test; import java. ...
- VS代码生成工具ReSharper发布8.1版本
ReSharper是一个著名的VS代码生成工具,能帮助VS成为一个更佳的IDE.JetBrains公司今天发布了ReSharper最新版本8.1. 本次新版本更新涉及到打印稿.与VS2013集成.代码 ...
- js操作cookie方法
cookie cookie,有时也用其复数形式Cookies,指某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据(通常经过加密).定义于RFC2109和2965都已废弃,最 ...
- 查询职责分离(CQRS)模式
查询职责分离(CQRS)模式 在常用的三层架构中,通常都是通过数据访问层来修改或者查询数据,一般修改和查询使用的是相同的实体.在一些业务逻辑简单的系统中可能没有什么问题,但是随着系统逻辑变得复杂,用户 ...
- Vi编辑器入门
Vi编辑器入门 vi编辑器是所有Unix及Linux系统下标准的编辑器,类似于windows上的记事本! 1.vi的基本概念 基本上vi可以分为三种状态,分别是命令模式(command mode ...
- [google面试CTCI] 1-7.将矩阵中特定行、列置0
[字符串与数组] Q:Write an algorithm such that if an element in an MxN matrix is 0, its entire row and colu ...
- Apache Rewrite 中文详解
这几天一直在研究Apache的重写规则,虽然网上有很多教程,不过发现大部分都是抄袭一个人的,一点都不全,所以我想写一个简单的易于理解的教程,我学习.htaccess是从目录保护开始的,这个也比较简单, ...