CF 327E(Axis Walking-状态压缩Dp-lowbit的使用)
3 seconds
512 megabytes
standard input
standard output
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d.
Iahub has n positive integers a1, a2, ..., an. The sum of those numbers is d. Suppose p1, p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1, b2 = ap2 and so on. The array b is called a "route". There are n! different routes, one for each permutation p.
Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ j ≤ n) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.
Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those k numbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007(109 + 7).
The first line contains an integer n (1 ≤ n ≤ 24). The following line contains n integers: a1, a2, ..., an (1 ≤ ai ≤ 109).
The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.
Output a single integer — the answer of Iahub's dilemma modulo 1000000007 (109 + 7).
3
2 3 5
2
5 7
1
3
2 2 2
2
1 3
6
In the first case consider six possible orderings:
- [2, 3, 5]. Iahub will stop at position 2, 5 and 10. Among them, 5 is bad luck for him.
- [2, 5, 3]. Iahub will stop at position 2, 7 and 10. Among them, 7 is bad luck for him.
- [3, 2, 5]. He will stop at the unlucky 5.
- [3, 5, 2]. This is a valid ordering.
- [5, 2, 3]. He got unlucky twice (5 and 7).
- [5, 3, 2]. Iahub would reject, as it sends him to position 5.
In the second case, note that it is possible that two different ways have the identical set of stopping. In fact, all six possible ways have the same stops: [2, 4, 6], so there's no bad luck for Iahub.
状态压缩DP
考试时由于24*2^24 复杂度太高没写
结果答案居然就是这样
不过枚举时要直接用lowbit(i),返回min(2^k) (i)2 第k位为1
大家直接看答案就行了
忽然发现几乎没做过状压DP的题
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define F (1000000007)
#define MAXN (1<<24)
#define MAXItem (24+10)
typedef long long ll;
int n,k;
ll f[MAXN]={0},g[MAXN]={0},A[MAXN]={0},a[MAXItem]={0},b[MAXItem]={0};
int main()
{
// freopen("CF327E.in","r",stdin);
scanf("%d",&n);
For(i,n) scanf("%d",&a[i]),A[1<<i-1]=a[i];
cin>>k;
For(i,k) scanf("%d",&b[i]);Fork(i,k+1,2) b[i]=-1; //除了x=-1,x^-1!=0
Rep(i,1<<n) f[i]=f[i-(i&(-i))]+A[i&(-i)];
g[0]=1;
Rep(i,1<<n)
if (f[i]^b[1]&&f[i]^b[2]&&f[i]^b[3])
{
//for(int j=(1<<n)-1;j;j-=j&(-j)) f[i+(j&-j)
for(int j=i;j;j-=j&(-j)) g[i]=g[i]+g[i-(j&(-j))];
g[i]%=F;
} printf("%I64d",g[(1<<n)-1]%F); // while(1);
return 0;
}
CF 327E(Axis Walking-状态压缩Dp-lowbit的使用)的更多相关文章
- CodeForces 327E Axis Walking(状压DP+卡常技巧)
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub ...
- Codeforces 327E Axis Walking 状压dp
这题真的有2500分吗... 难以置信... #include<bits/stdc++.h> #define LL long long #define fi first #define s ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
随机推荐
- C语言库函数大全及应用实例八
原文:C语言库函数大全及应用实例八 [编程资料]C语言库函数大全及应用实例八 函数名: kbhit 功 能: 检查 ...
- POJ3233(矩阵二分再二分)
题目非常有简单: Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + ...
- C语言使用SQLite3数据库
原文:C语言使用SQLite3数据库 SQLite是一个著名的免费数据库(不管是商用还是私人使用都免费),已经向众多公司如Adobe, Airbus, Apple, google, GE, Micro ...
- android数据库升级的措辞
在基类table增加upgrade操作: public abstract class DbBaseTable { private static final String TAG = "DbB ...
- js 实现复制粘贴文本过滤(保留文字和图片)
实现复制粘贴文本过滤(保留文字和图片) demo如下: <head> <meta http-equiv="Content-Type" content=" ...
- leetco Path Sum II
和上一题类似,这里是要记录每条路径并返回结果. Given the below binary tree and sum = 22, 5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 ...
- jquery dialog的关闭事件不触发,触发不了
在网上大部分是: close:function(event,ui){}; 但不管用,不过onClose:function(){};挺好使的,终于找到了
- SQL练习1关于插入删除,修改,单表查询
--创建数据库create database studentsDB --创建表create table student( id int primary key, stuid char(10), stu ...
- 关于Dictionary字典和List列表
命名空间System.Collections.Generic中有两个非常重要,而且常用的泛型集合类,它们分别是Dictionary<TKey,TValue>字典和List<T> ...
- 【IOS开发】SimPholders的使用
推荐一个Xocde开发工具 “SimPholders”,能够快速访问到你的模拟器文件夹,最重要的是完全免费! 官方地址