离散化+莫队

cnt数组表示某个颜色出现的次数

sum数组表示某个数量出现的颜色种类数

其它细节问题就按照莫队的模板来的

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
const int N=1e7+10;
struct E{
int l,r,id;
}e[N*2];
int belong[N];
bool cmp(E a,E b){
return (belong[a.l]^belong[b.l]) ? a.l<b.l : a.r<b.r;
}
int a[N];
int cnt[N],sum[N],op;
inline void add(int x){
cnt[a[x]]++;
sum[cnt[a[x]]]++;
op=max(cnt[a[x]],op);
}
inline void del(int x){
sum[cnt[a[x]]]--;
if(sum[cnt[a[x]]]==0)op--;
cnt[a[x]]--;
}
int ans[N];
int w[N];
int main(){
int n,q;
cin>>n>>q;
int size=sqrt(n*2.0/3.0);
int num=ceil((double)n/size);
for(int i=1;i<=num;i++)
for(int j=(i-1)*size+1;j<=i*size;j++)
belong[j]=i;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
w[i]=a[i];
}
sort(w+1,w+1+n);
int len=unique(w+1,w+n+1)-w-1;//去重
for(int i=1;i<=n;i++)
a[i]=lower_bound(w+1,w+1+len,a[i])-w;//离散化 for(int i=1;i<=q;i++){
scanf("%d%d",&e[i].l,&e[i].r);
e[i].l=max(1,e[i].l);
e[i].l=min(n,e[i].l);
e[i].r=max(1,e[i].r);
e[i].r=min(n,e[i].r);
e[i].id=i;
}
sort(e+1,e+1+q,cmp);
int l=e[1].l,r=e[1].r;
for(int i=l;i<=r;i++)add(i);
for(int i=1;i<=q;i++){
while(l<e[i].l)del(l++);
while(l>e[i].l)add(--l);
while(r<e[i].r)add(++r);
while(r>e[i].r)del(r--);
ans[e[i].id]=op;
}
for(int i=1;i<=q;i++){
printf("%d\n",ans[i]);
}
}

普通莫队--洛谷P1997 【faebdc的烦恼】的更多相关文章

  1. 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)

    莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...

  2. Machine Learning Codeforces - 940F(带修莫队) && 洛谷P4074 [WC2013]糖果公园

    以下内容未验证,有错请指正... 设块大小为T,则块数为$\frac{n}{T}$ 将询问分为$(\frac{n}{T})^2$块(按照左端点所在块和右端点所在块分块),同块内按时间从小到大依次处理 ...

  3. 洛谷P2060 faebdc玩扑克2

    P2060 faebdc玩扑克2 题目背景 faebdc和zky又在玩扑克 题目描述 给你2N张牌,编号为1,2,3..n,n+1,..2n.这也是最初的牌的顺序. 一次洗牌是把序列变为n+1,1,n ...

  4. 洛谷 P2021 faebdc玩扑克

    P2021 faebdc玩扑克 题目背景 faebdc和zky在玩一个小游戏 题目描述 zky有n个扑克牌,编号从1到n,zky把它排成一个序列,每次把最上方的扑克牌放在牌堆底,然后把下一张扑克牌拿出 ...

  5. [bzoj1005] [洛谷P2624] 明明的烦恼

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣-- 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 ...

  6. 洛谷P4689 [Ynoi2016]这是我自己的发明(莫队,树的dfn序,map,容斥原理)

    洛谷题目传送门 具体思路看别的题解吧.这里只提两个可能对常数和代码长度有优化的处理方法. I 把一个询问拆成\(9\)个甚至\(16\)个莫队询问实在是有点珂怕. 发现询问的一边要么是一个区间,要么是 ...

  7. 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】

    题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...

  8. bzoj 3236: 洛谷 P4396: [AHOI2013]作业 (莫队, 分块)

    题目传送门:洛谷P4396. 题意简述: 给定一个长度为\(n\)的数列.有\(m\)次询问,每次询问区间\([l,r]\)中数值在\([a,b]\)之间的数的个数,和数值在\([a,b]\)之间的不 ...

  9. 【洛谷3674】小清新人渣的本愿(莫队,bitset)

    [洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...

随机推荐

  1. nuxt.js 部署静态页面[dist]到gh-pages

    一. 1.添加package.json { "name": "nuxtweb001", "version": "1.0.0&quo ...

  2. docker showdoc安装

    自动脚本安装 前言 自动脚本脚本利用docker来安装运行环境,适用于linux服务器.如果你的服务器没有docker服务,脚本会尝试安装之.安装docker的过程可能有些慢.如果你已经安装过dock ...

  3. springcloud微服务基于redis集群的单点登录

    springcloud微服务基于redis集群的单点登录 yls 2019-9-23 简介 本文介绍微服务架构中如何实现单点登录功能 创建三个服务: 操作redis集群的服务,用于多个服务之间共享数据 ...

  4. 【algo&ds】3.栈和队列

    1.堆栈 堆栈(Stack):具有一定操作约束的线性表(只在一端(栈顶,Top)做插入.删除) 先进后出特性 1.1堆栈的抽象数据类型描述 类型名称: 堆栈(Stack) 数据对象集:一个有0个或多个 ...

  5. js控制文本显示的字数,超出显示省略号

    在css中我们说了用css控制文本显示几行,超出用省略号,但这个办法是要完全占满一整行的,偏偏就是有UI设计师就不这么干,是不是很想打他,哈哈哈,我不会的时候都这样子在心里骂设计师的,这么久那么爱搞特 ...

  6. head first 设计模式第一章笔记

    设计模式是告诉我们如何组织类和对象以解决某种问题. 学习设计模式,也就是学习其他开发人员的经验与智慧,解决遇到的相同的问题. 使用模式的最好方式是:把模式装进脑子,然后在设计的时候,寻找何处可以使用它 ...

  7. SpringBoot源码学习系列之SpringMVC自动配置

    目录 1.ContentNegotiatingViewResolver 2.静态资源 3.自动注册 Converter, GenericConverter, and Formatter beans. ...

  8. JSON的使用场景及注意事项介绍

    上篇我们讲解了JSON的诞生原因是因为XML整合到HTML中各个浏览器实现的细节不尽相同,所以道格拉斯·克罗克福特(Douglas Crockford) 和 奇普·莫宁斯达(Chip Mornings ...

  9. ASP.NET Core 中的 ObjectPool 对象重用(一)

    前言 对象池是一种设计模式,一个对象池包含一组已经初始化过且可以使用的对象,而可以在有需求时创建和销毁对象.池的对象可以从池中取得对象,对其进行操作处理,并在不需要时归还给池子而非直接销毁他,他是一种 ...

  10. Mybatis一级缓存和二级缓存总结

    1:mybatis一级缓存:级别是session级别的,如果是同一个线程,同一个session,同一个查询条件,则只会查询数据库一次 2:mybatis二级缓存:级别是sessionfactory级别 ...