压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现
压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之SP算法python实现
压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OLS算法python实现
压缩感知重构算法之IRLS算法python实现
SP(subspace pursuit)算法是压缩感知中一种非常重要的贪婪算法,它有较快的计算速度和较好的重构概率,在实际中应用较多。本文给出了SP算法的python和matlab代码,以及完整的仿真过程。
参考文献:Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. Information Theory, IEEE Transactions on, 2009, 55(5): 2230-2249.
SP算法流程:
代码
要利用python实现,电脑必须安装以下程序
- python (本文用的python版本为3.5.1)
- numpy python包(本文用的版本为1.10.4)
- scipy python包(本文用的版本为0.17.0)
- pillow python包(本文用的版本为3.1.1)
另外需要下载lena图片放在和程序同一个目录下面
#coding:utf-8
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为SP算法 ,图像按列进行处理
# 参考文献: W. Dai and O. Milenkovic, “Subspace Pursuit for Compressive
# Sensing Signal Reconstruction,” 2009.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#导入集成库
import math
# 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包
#读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))#图片大小256*256
#生成高斯随机测量矩阵
sampleRate=0.7 #采样率
Phi=np.random.randn(256*sampleRate,256)
#生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d)
#随机测量
img_cs_1d=np.dot(Phi,im)
#SP算法函数
def cs_sp(y,D):
K=math.floor(y.shape[0]/3)
pos_last=np.array([],dtype=np.int64)
result=np.zeros((256))
product=np.fabs(np.dot(D.T,y))
pos_temp=product.argsort()
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos_current=pos_temp[0:K]#初始化索引集 对应初始化步骤1
residual_current=y-np.dot(D[:,pos_current],np.dot(np.linalg.pinv(D[:,pos_current]),y))#初始化残差 对应初始化步骤2
while True: #迭代次数
product=np.fabs(np.dot(D.T,residual_current))
pos_temp=np.argsort(product)
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos=np.union1d(pos_current,pos_temp[0:K])#对应步骤1
pos_temp=np.argsort(np.fabs(np.dot(np.linalg.pinv(D[:,pos]),y)))#对应步骤2
pos_temp=pos_temp[::-1]
pos_last=pos_temp[0:K]#对应步骤3
residual_last=y-np.dot(D[:,pos_last],np.dot(np.linalg.pinv(D[:,pos_last]),y))#更新残差 #对应步骤4
if np.linalg.norm(residual_last)>=np.linalg.norm(residual_current): #对应步骤5
pos_last=pos_current
break
residual_current=residual_last
pos_current=pos_last
result[pos_last[0:K]]=np.dot(np.linalg.pinv(D[:,pos_last[0:K]]),y) #对应输出步骤
return result
#重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_sp(img_cs_1d[:,i],Theta_1d) #利用SP算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵
#显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()
欢迎python爱好者加入:学习交流群 667279387
压缩感知重构算法之SP算法python实现的更多相关文章
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之子空间追踪(SP)
SP的提出时间比CoSaMP提出时间稍晚一些,但和压缩采样匹配追踪(CoSaMP)的方法几乎是一样的.SP与CoSaMP主要区别在于“In each iteration, in the SP algo ...
- 浅谈压缩感知(二十四):压缩感知重构算法之子空间追踪(SP)
主要内容: SP的算法流程 SP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 SP与CoSaMP的性能比较 一.SP的算法流程 压缩采样匹配追踪(CoSaMP)与子 ...
- 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...
- 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...
随机推荐
- Scrapy进阶知识点总结(六)——中间件详解
概述 查看scrapy官网的框架图,可以看出中间件处于几大主要组件之间,类似于生产流水线上的加工过程,将原料按照不同需求与功能加工成成品 其中4,5处于下载器与引擎之间的就是下载中间件,而spider ...
- 基于docker搭建Jenkins+Gitlab+Harbor+Rancher架构实现CI/CD操作(续)
说明:前期的安装,请转向https://www.cnblogs.com/lq-93/p/11824039.html (4).查看gitlab镜像是否启动成功 docker inspect 容器id ...
- c#属性(Property)
属性(Property)是类(class).结构(structure)和接口(interface)的命名(named)成员.类或结构中的成员变量或方法称为 域(Field).属性(Property)是 ...
- 理解Spark运行模式(二)(Yarn Cluster)
上一篇说到Spark的yarn client运行模式,它与yarn cluster模式的主要区别就是前者Driver是运行在客户端,后者Driver是运行在yarn集群中.yarn client模式一 ...
- 05-商品类别数据和VUE展示
一.商品类别数据和VUE展示 1.商品类别数据接口 将商品类别数据展示出来,视图(views.py)代码如下: class CategoryViewset(mixins.ListModelMixin, ...
- Anaconda 笔记
Anaconda笔记 conda 功能 管理版本的切换 安装其他的包 conda 创建python27环境 conda create --name python27 python=2.7 conda ...
- 正则表达式 第五篇:C# 正则元字符
本文整理C#正则表达式的元字符,正则表达式是由字符构成的表达式,每个字符代表一个规则,表达式中的字符分为两种类型:普通字符和元字符.普通字符是指字面含义不变的字符,按照完全匹配的方式匹配文本,而元字符 ...
- 从静态代理,jdk动态代理到cglib动态代理-一文搞懂代理模式
从代理模式到动态代理 代理模式是一种理论上非常简单,但是各种地方的实现往往却非常复杂.本文将从代理模式的基本概念出发,探讨代理模式在java领域的应用与实现.读完本文你将get到以下几点: 为什么需要 ...
- opencv 3 core组件进阶(1 访问图像中的像素)
访问图像像素的三类方法 ·方法一 指针访问:C操作符[ ]; ·方法二 迭代器iterator; ·方法三 动态地址计算. #include <opencv2/core/core.hpp> ...
- 2C 还是 2B,跟找工作有什么关系?
通常,我们会把公司的业务类型分成以下几种: 2C,to Customer,指面向个人客户的业务,即将公司的产品或服务销售给个人,通常做出购买决策的个人也是使用产品或服务的用户.举例说明,像 BAT 发 ...