压缩感知重构算法之OMP算法python实现

压缩感知重构算法之CoSaMP算法python实现

压缩感知重构算法之SP算法python实现

压缩感知重构算法之IHT算法python实现

压缩感知重构算法之OLS算法python实现

压缩感知重构算法之IRLS算法python实现

SP(subspace pursuit)算法是压缩感知中一种非常重要的贪婪算法,它有较快的计算速度和较好的重构概率,在实际中应用较多。本文给出了SP算法的python和matlab代码,以及完整的仿真过程。

参考文献:Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. Information Theory, IEEE Transactions on, 2009, 55(5): 2230-2249.

SP算法流程:


代码

要利用python实现,电脑必须安装以下程序

  • python (本文用的python版本为3.5.1)
  • numpy python包(本文用的版本为1.10.4)
  • scipy python包(本文用的版本为0.17.0)
  • pillow python包(本文用的版本为3.1.1)

    另外需要下载lena图片放在和程序同一个目录下面
#coding:utf-8
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为SP算法 ,图像按列进行处理
# 参考文献: W. Dai and O. Milenkovic, “Subspace Pursuit for Compressive
# Sensing Signal Reconstruction,” 2009.
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #导入集成库
import math # 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包 #读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))#图片大小256*256 #生成高斯随机测量矩阵
sampleRate=0.7 #采样率
Phi=np.random.randn(256*sampleRate,256) #生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d) #随机测量
img_cs_1d=np.dot(Phi,im) #SP算法函数
def cs_sp(y,D):
K=math.floor(y.shape[0]/3)
pos_last=np.array([],dtype=np.int64)
result=np.zeros((256)) product=np.fabs(np.dot(D.T,y))
pos_temp=product.argsort()
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos_current=pos_temp[0:K]#初始化索引集 对应初始化步骤1
residual_current=y-np.dot(D[:,pos_current],np.dot(np.linalg.pinv(D[:,pos_current]),y))#初始化残差 对应初始化步骤2 while True: #迭代次数
product=np.fabs(np.dot(D.T,residual_current))
pos_temp=np.argsort(product)
pos_temp=pos_temp[::-1]#反向,得到前面L个大的位置
pos=np.union1d(pos_current,pos_temp[0:K])#对应步骤1
pos_temp=np.argsort(np.fabs(np.dot(np.linalg.pinv(D[:,pos]),y)))#对应步骤2
pos_temp=pos_temp[::-1]
pos_last=pos_temp[0:K]#对应步骤3
residual_last=y-np.dot(D[:,pos_last],np.dot(np.linalg.pinv(D[:,pos_last]),y))#更新残差 #对应步骤4
if np.linalg.norm(residual_last)>=np.linalg.norm(residual_current): #对应步骤5
pos_last=pos_current
break
residual_current=residual_last
pos_current=pos_last
result[pos_last[0:K]]=np.dot(np.linalg.pinv(D[:,pos_last[0:K]]),y) #对应输出步骤
return result #重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_sp(img_cs_1d[:,i],Theta_1d) #利用SP算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵 #显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()

欢迎python爱好者加入:学习交流群 667279387

压缩感知重构算法之SP算法python实现的更多相关文章

  1. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  2. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  4. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  5. 压缩感知重构算法之OMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之子空间追踪(SP)

    SP的提出时间比CoSaMP提出时间稍晚一些,但和压缩采样匹配追踪(CoSaMP)的方法几乎是一样的.SP与CoSaMP主要区别在于“In each iteration, in the SP algo ...

  7. 浅谈压缩感知(二十四):压缩感知重构算法之子空间追踪(SP)

    主要内容: SP的算法流程 SP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 SP与CoSaMP的性能比较 一.SP的算法流程 压缩采样匹配追踪(CoSaMP)与子 ...

  8. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  9. 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)

    主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...

随机推荐

  1. Scrapy进阶知识点总结(六)——中间件详解

    概述 查看scrapy官网的框架图,可以看出中间件处于几大主要组件之间,类似于生产流水线上的加工过程,将原料按照不同需求与功能加工成成品 其中4,5处于下载器与引擎之间的就是下载中间件,而spider ...

  2. 基于docker搭建Jenkins+Gitlab+Harbor+Rancher架构实现CI/CD操作(续)

    说明:前期的安装,请转向https://www.cnblogs.com/lq-93/p/11824039.html (4).查看gitlab镜像是否启动成功 docker inspect  容器id  ...

  3. c#属性(Property)

    属性(Property)是类(class).结构(structure)和接口(interface)的命名(named)成员.类或结构中的成员变量或方法称为 域(Field).属性(Property)是 ...

  4. 理解Spark运行模式(二)(Yarn Cluster)

    上一篇说到Spark的yarn client运行模式,它与yarn cluster模式的主要区别就是前者Driver是运行在客户端,后者Driver是运行在yarn集群中.yarn client模式一 ...

  5. 05-商品类别数据和VUE展示

    一.商品类别数据和VUE展示 1.商品类别数据接口 将商品类别数据展示出来,视图(views.py)代码如下: class CategoryViewset(mixins.ListModelMixin, ...

  6. Anaconda 笔记

    Anaconda笔记 conda 功能 管理版本的切换 安装其他的包 conda 创建python27环境 conda create --name python27 python=2.7 conda ...

  7. 正则表达式 第五篇:C# 正则元字符

    本文整理C#正则表达式的元字符,正则表达式是由字符构成的表达式,每个字符代表一个规则,表达式中的字符分为两种类型:普通字符和元字符.普通字符是指字面含义不变的字符,按照完全匹配的方式匹配文本,而元字符 ...

  8. 从静态代理,jdk动态代理到cglib动态代理-一文搞懂代理模式

    从代理模式到动态代理 代理模式是一种理论上非常简单,但是各种地方的实现往往却非常复杂.本文将从代理模式的基本概念出发,探讨代理模式在java领域的应用与实现.读完本文你将get到以下几点: 为什么需要 ...

  9. opencv 3 core组件进阶(1 访问图像中的像素)

    访问图像像素的三类方法 ·方法一 指针访问:C操作符[ ]; ·方法二 迭代器iterator; ·方法三 动态地址计算. #include <opencv2/core/core.hpp> ...

  10. 2C 还是 2B,跟找工作有什么关系?

    通常,我们会把公司的业务类型分成以下几种: 2C,to Customer,指面向个人客户的业务,即将公司的产品或服务销售给个人,通常做出购买决策的个人也是使用产品或服务的用户.举例说明,像 BAT 发 ...