Anaconda,nvidia-docker,Linux三种方式安装caffe

1.Anaconda安装caffe

  1.首先安装anaconda

  2.创建虚拟环境(python2.7)  

conda create -n caffe python=2.7 anaconda

  3.安装caffe

# 然后下面二选一即可,安装caffe
conda install -c conda-forge caffe
conda install -c conda-forge/label/broken caffe

  4.注意:

# 如果出现numpy导入错误,是因为 conda-forge中的numpy版本过低,可再输入下面命令
pip install numpy --upgrade

  5.测试

# 测试是否成功
source activate caffe
python
import caffe

2.nvidia-docker安装caffe-gpu

注意:docker仅支持cpu
nvidia-docker支持GPU

  1.安装nvidia-docker

wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
sudo dpkg -i /tmp/nvidia-docker*.deb
# 测试
nvidia-docker run --rm nvidia/cuda nvidia-smi

  2.拉取caffe-gpu镜像

nvidia-docker pull bvlc/caffe:gpu

  3.启动一个容器

nvidia-docker run --rm -ti <镜像名字>
docker attach <容器id> # 已打开的容器
# 退出容器 ctrl + d (容器不运行)或者ctrl q+p(容器后台运行)
# 进入未运行的容器
docker ps -a # 查看容器id
docker start <id>
docker attach <id>
# 容器改名
dockers rename 原id 新id

  4.更新源

apt uptate

  5.测试

#caffe安装目录默认在/opt/caffe,若想支持opencv,多gpu,请自行编译,可参看第三种方式编译安装caffe
python
import caffe

3.Linux编译caffe,并支持多GPU

  1.linux安装git

# Centos
yum install git
# Ubuntu
sudo apt-get install git
git clone https://github.com/BVLC/caffe.git

  2.编译前的Makefile.config配置

# 新建Makefile.config
mv Makefile.config.example Makefile.config

注意:

 ## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := # CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV :=
# USE_LEVELDB :=
# USE_LMDB := # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := # Uncomment if you're using OpenCV 3
OPENCV_VERSION := # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2. \
/usr/lib/python2./dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2. \
# $(ANACONDA_HOME)/lib/python2./site-packages/numpy/core/include # Uncomment to use Python (default is Python )
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3./dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
USE_NCCL := # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := # enable pretty build (comment to see full commands)
Q ?= @

  1.第5行USE_CUDNN := 1(安装和cuda匹配的cudnn)

  2.第21行 OPENCV_VERSION := 3(安装opencv)

sudo apt install git
git clone https://github.com/jayrambhia/Install-OpenCV
cd Install-OpenCV/Ubuntu/
chmod +x *
./opencv_latest.sh make -j8 && make pycaffe

  3.第28行CUDA_DIR := /usr/local/cuda(安装cuda的目录)

  4.第49行BLAS := atlas

  5.第67,68行

PYTHON_INCLUDE := /usr/include/python2. \
/usr/lib/python2./dist-packages/numpy/core/include

  6.第93,94行

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial

  7.第102行USE_NCCL := 1(支持多gpu)

git clone https://github.com/NVIDIA/nccl.git
cd nccl
sudo make install
sudo gedit ~/.bashrc
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/home/XXX/nccl/build/lib/" #XXX为用户名
source .bashrc 使用多个gpu
我们在使用caffe的工具训练网络时,在语句的最后加上以下内容即可 -gpu all #运行所有的gpu
-gpu , #运行1号2号gpu

  3.开始编译

sudo make all
sudo make test
sudo make pycaffe
sudo make runtest

  4.测试

python
import caffe

  

  

  

      

最全caffe安装踩坑记录(Anaconda,nvidia-docker,Linux编译)的更多相关文章

  1. Linux mint 安装踩坑记录

    记得之前电脑上的那个Ubuntu是去年寒假的时候安装的,算下来自己用Linux也快一年了.虽然在去年暑假的时候我也曾经想过要把Ubuntu升级到18.04可是当时安装了几次都没有成功,自己也就放弃了. ...

  2. opencv c++安装踩坑记录 file cannot create directory: /usr/local/include/opencv2. Maybe need administrative privileges

    前言 最近深度学习Ultra-Fast-Lane-Detection/INSTALL.md at master · cfzd/Ultra-Fast-Lane-Detection (github.com ...

  3. Ubuntu18.04 显卡驱动+Cuda安装踩坑记录 以及Ubuntu虚拟内存的添加

    前几天买了张亮机卡,终于把主显卡成功直连到Unraid OS的虚拟机上了.然后就开始安装ubuntu系统开始配置环境,遇到了不少坑,特此记录. gcc版本问题 在安装显卡驱动的时候,不要修改gcc版本 ...

  4. Win10自带Ubuntu子系统下Mysql安装踩坑记录

    linux系统为win10自带Ubuntu子系统 错误的安装过程 我按照一般的方法安装mysql,安装步骤如下 1.升级源 $ sudo apt-get update 2.安装mysql $ sudo ...

  5. docker安装踩坑记录

    .docker安装包安装很顺利, yum安装安装源在官网或镜像网站下载, fedora/centos分别下载不同的, 在/etc/yum.repos.d/doccker-ce.repo, 把网址改为镜 ...

  6. pyltp安装踩坑记录

    LTP(Language Technology Platform)由哈工大社会计算与信息检索研究中心开发,提供包括中文分词.词性标注.命名实体识别.依存句法分析.语义角色标注等丰富. 高效.精准的自然 ...

  7. VNPY - windows 安装踩坑记录

    twisted requires PyHamcrest>=, which is not ins grin requires argparse>=1.1, which is not inst ...

  8. Manjaro (KDE)安装踩坑记录

    1.如果双显卡无法安装系统可以进如BIOS屏蔽显卡后进入安装 2.如果安装kde版本后容易冻屏.死机,可以尝试安装闭源驱动 3.如果出现resolving time out 10000ms 这样的问题 ...

  9. 全文搜索引擎 Elasticsearch 安装踩坑记录

    一.安装 Elastic 需要 Java 8 环境.如果你的机器还没安装 Java 安装完 Java,就可以跟着官方文档安装 Elastic.直接下载压缩包比较简单. $ wget https://a ...

随机推荐

  1. Android动画基础——属性动画(Property Animation)

    本篇涉及例子下载:Github 本篇讲android 3.0引入的属性动画框架,上篇写视图动画View Animation时就说过ViewAnimation的缺点,那就是动画作用的是view本身的视觉 ...

  2. storm和kafka的wordCount

    这个是在window环境下面安装的kafka 下载pom依赖 <dependency> <groupId>org.apache.storm</groupId> &l ...

  3. 广义线性模型(Generalized Linear Model)

    广义线性模型(Generalized Linear Model) http://www.cnblogs.com/sumai 1.指数分布族 我们在建模的时候,关心的目标变量Y可能服从很多种分布.像线性 ...

  4. php 的mvc开发

    至于什么MVC结构,其实就是三个Model,Contraller,View单词的简称,,Model,主要任务就是把数据库或者其他文件系统的数据按 照我们需要的方式读取出来.View,主要负责页面的,把 ...

  5. 304902阿里巴巴Java开发手册1.4.0

    转自官网 前言 <阿里巴巴Java开发手册>是阿里巴巴集团技术团队的集体智慧结晶和经验总结,经历了多次大规模一线实战的检验及不断完善,系统化地整理成册,回馈给广大开发者.现代软件行业的高速 ...

  6. Angular4.0从入门到实战打造在线竞拍网站学习笔记之一--组件

    Angular4.0基础知识之组件 Angular4.0基础知识之路由 Angular4.0依赖注入 Angular4.0数据绑定&管道 最近搞到手了一部Angular4的视频教程,这几天正好 ...

  7. Scala 学习之路(三)—— 流程控制语句

    一.条件表达式if Scala中的if/else语法结构与Java中的一样,唯一不同的是,Scala中的if表达式是有返回值的. object ScalaApp extends App { val x ...

  8. 使用git提交时报错:error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413 Request Entity Too Large

    Delta compression using up to 4 threads.Compressing objects: 100% (2364/2364), done.Writing objects: ...

  9. 对比Hashtable,HashMap,TreeMap,谈谈对HashMap的理解

    都实现了Map接口,存储的内容是基于key-value的键值对映射,一个映射不能有重复的键,一个键最多只能映射一个值. 1.初始化的时候:HashTable在不指定容量的情况下的默认容量是11,且不要 ...

  10. SQL Server温故系列(1):SQL 数据操作 CRUD 之增删改合

    1.插入语句 INSERT INTO 1.1.用 INSERT 插入单行数据 1.2.用 INSERT 插入多行数据 1.3.用 INSERT 插入子查询结果行 1.4.INSERT 小结及特殊字段插 ...