题意

有n个点,且2|n,要求将其分为n/2对点对使得所有点对中距离之和尽量小

输出保留两位小数

考虑数据范围先想到的是搜索,然而搜索超时,我们发现在搜索的时候有重复搜索的情况,那么考虑记忆化,看到数据范围,便想到状压dp,每个点对应一个二进制位,未配对的记为1,已经配对的记为0。如n=8,未配对的点为1,3,5,7,则对应的二进制为01010101,对应的十进制为85,则把(1,3,5,7)配对的最小值存储在f[85]中。

那么我们可以写出状态转移方程

f[i]=min(f[i xor(1<<(x-1))xor(1<<(y-1))]+dis(x,y))

(i&(1<<(x-1))!=0)&(i&1<<(y-1))!=0)

然后这道题直接dp便可解决

#include<bits/stdc++.h>
using namespace std;
const int maxn=25;
const int INF=1000000;
struct node{
int x;
int y;
}a[maxn];
int n,S;
double dis[maxn][maxn],d[(1<<20)+5];
void ins(){
for(int i=1;i<=n;++i){
for(int j=i+1;j<=n;++j){
dis[i][j]=dis[j][i]=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d %d",&a[i].x,&a[i].y);
}
ins();
for(int S=1;S<=(1<<n)-1;S++){
d[S]=INF;
int i;
for(i=1;i<=n-1;++i){
if(S&(1<<(i-1))) break;
}
for(int j=i+1;j<=n;j++){
if(S&(1<<(j-1))) d[S]=min(d[S],dis[i][j]+d[S^(1<<(i-1))^(1<<(j-1))]);
}
}
printf("%.2lf",d[(1<<n)-1]);
return 0;
}
/*
4
8730 9323
-3374 3929
-7890 -6727
1257 4689
*/

yzoj1891 最优配对问题 题解的更多相关文章

  1. 集合上的动态规划---最优配对问题(推荐:*****) // uva 10911

    /* 提醒推荐:五星 刘汝佳<算法竞赛入门经典>,集合上的动态规划---最优配对问题 题意:空间里有n个点P0,P1,...,Pn-1,你的任务是把它们配成n/2对(n是偶数),使得每个点 ...

  2. UVA 10911 Forming Quiz Teams(dp + 集合最优配对问题)

    4th IIUC Inter-University Programming Contest, 2005 G Forming Quiz Teams Input: standard input Outpu ...

  3. 「NOIP2009」最优贸易 题解

    「NOIP2009」最优贸易 题解 题目TP门 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 ...

  4. 最优配对问题(集合上的动态规划) —— 状压DP

    题目来源:紫书P284 题意: 给出n个点的空间坐标(n为偶数, n<=20), 把他们配成n/2对, 问:怎样配对才能使点对的距离和最小? 题解: 设dp[s]为:状态为s(s代表着某个子集) ...

  5. NOIP 2009 最优贸易 题解

    一道最短路的题,找一个买入和卖出相差最高的点即可,我们先以1为起点跑spfa,d1[x]不再表示距离而表示能够经过权值最小的节点的权值即 if(d1[y]>min(d1[x],price[y]) ...

  6. 洛谷 P1073 最优贸易 题解

    题面 大家都是两遍SPFA吗?我这里就一遍dp啊: 首先判断对于一个点u,是否可以从一号点走到这里,并且可以从u走到n号点: 对于这样的点我们打上标记: 那么抛出水晶球的点一定是从打上标记的点中选出一 ...

  7. 遗传编程(GA,genetic programming)算法初探,以及用遗传编程自动生成符合题解的正则表达式的实践

    1. 遗传编程简介 0x1:什么是遗传编程算法,和传统机器学习算法有什么区别 传统上,我们接触的机器学习算法,都是被设计为解决某一个某一类问题的确定性算法.对于这些机器学习算法来说,唯一的灵活性体现在 ...

  8. 【BZOJ】4144: [AMPPZ2014]Petrol

    题意 给定一个\(n\)个点.\(m\)条边的带权无向图,其中有\(s\)个点是加油站.每辆车都有一个油量上限\(b\),即每次行走距离不能超过\(b\),但在加油站可以补满.\(q\)次询问,每次给 ...

  9. 4560 NOIP2015 D2T2 子串

    4560 NOIP2015 D2T2 子串  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有两 ...

随机推荐

  1. Unity基于NGUI的简单并可直接使用的虚拟摇杆实现(一)

    可能大家都听说过大名鼎鼎的easytouch,然而easytouch是基于UGUI的,两种不同的UI混用,可能会造成项目管理的混乱,并且可能会出现各种幺蛾子,比如事件传递互相扰乱的问题. 于是就想找一 ...

  2. Docker相关地址

    Docker社区版(CE)地址: https://hub.docker.com/search/?type=edition&offering=community Docker文档地址: http ...

  3. mysql 查询结果显示行号

    mysql 查询时,不像oracle那样,可以直接用 rownum 显示结果行号. 可以用定义用户变量来实现 set @myrnum = 0; select (@myrnum := @myrnum + ...

  4. 数据结构之队列C++版

    #include "stdafx.h"/* 队列是一种先进先出的线性表队列的核心是对头部和尾部索引的操作 如上图所示,当对头索引移动到最前面6,队尾又不不再末尾0的位置,那么如果不 ...

  5. Java并发编程实战笔记—— 并发编程4

    1.同步容器类 同步容器类都是线程安全的,但在某些情况下可能需要额外的客户端加锁保护复合操作. 容器上常见的复合操作包括但不限于:迭代(反复访问数据,直到遍历完容器中所有的元素为止).跳转(根据指定顺 ...

  6. 【0806 | Day 9】异常处理/基本的文件操作

    一.异常处理 异常即报错,可分为语法异常和逻辑异常 1. 语法异常 举个栗子 if #报错 syntaxerror 0 = 1 #报错 syntaxerror ... 正经地举个栗子 print(1) ...

  7. 减谈迷宫C++

    今天老师让做了个迷宫问题,我一看到就发现和我之前写过的一个程序是一样 的,但是在后来编写的时候有一个地方搞错了,最后下课了我还是没有正确的编写好,然后今天回来之后自己有看了一下,现在已经解决了. #i ...

  8. 监控JVM

    WAS配置visualVM 在was控制台:找到应用程序服务器--java和进程管理--进程定义--JAVA虚拟机/通用JVM 参数 ,对应英文Application servers > ser ...

  9. Docker系列之.NET Core入门(三)

    前言 在Docker生态系统中除了上一节所讲解的基本概念,还有其他专业术语,本文我们将一笔带过,同时会开始陆续进入到在.NET Core中使用Docker. 专业术语 Docker Engine(Do ...

  10. 一文搞懂Python可迭代、迭代器和生成器的概念

    关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...