题目:

对一个正整数N而言,将它除了本身以外所有的因子加起来的总和为S,如果S>N,则N为盈数,如果S<N,则N为亏数,而如果S=N,则N为完全数(Perfect Number)。例如10的因子有1、2、5、10,1 +2+5=8<10,因此10为亏数,而12的因子有1、2、3、4、6、12,1+2+3+4+6=16>12,因此12为盈数。至于6的因子有1、2、3、6,1+2+3=6,所以6是完全数(它也是第一个完全数)。
现在请你写一个程序,输入一个正整数N,然后印出它是盈数、亏数还是完全数。

所以,这题的思路是:定义s=0.

把这个数和所有小于它的数mod,是0的话s=s+i.

代码:

 #include <iostream>
using namespace std;
int main(){
int a,i=;
while(cin>>a){
int s=;
for(i=;i<a;i++){
if(a%i==) s+=i;
}
if(s<i) cout<<"虧數"<<endl;
if(s==i) cout<<"完全數"<<endl;
if(s>i) cout<<"盈數"<<endl;
}
return ;
}

d010:盈数、亏数和完全数的更多相关文章

  1. HDU 1068 Girls and Boys(最大独立集合 = 顶点数 - 最大匹配数)

    HDU 1068 :题目链接 题意:一些男孩和女孩,给出一些人物关系,然后问能找到最多有多少个人都互不认识. 转换一下:就是大家都不认识的人,即最大独立集合 #include <iostream ...

  2. 卡特兰数 Catalan数 ( ACM 数论 组合 )

    卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ...

  3. HDU 4160 Dolls (最小路径覆盖=顶点数-最大匹配数)

    Dolls Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...

  4. catalan 数——卡特兰数(转)

    Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...

  5. FI-盘盈盘亏借贷科目

    资产的盘盈盘亏一般分两步:第一步,批准前调整为账实相符:第二步,批准后结转处理.库存现金.存货.固定资产.工程物资的盘盈盘亏的账务处理见下图: 以上科目中可能并不完整,比如“原材料等科目”就可能包括“ ...

  6. JS 实现计算一段文字中的字节数,字母数,数字数,行数,汉字数。

    看到了匹配,第一个想到了用正则表达式,哈哈,果然很方便.不过正则表达式高深莫测!我还没有研究明白啊..目前学了点皮毛.代码如下: <!DOCTYPE html PUBLIC "-//W ...

  7. 【Kafka】Kafka-分区数-备份数-如何设置-怎么确定-怎么修改

    Kafka-分区数-备份数-如何设置-怎么确定-怎么修改 kafka partition 数量 更新_百度搜索 kafka重新分配partition - - CSDN博客 如何为Kafka集群选择合适 ...

  8. Guardian of Decency UVALive - 3415 最大独立集=结点数-最大匹配数 老师带大学生旅游

    /** 题目:Guardian of Decency UVALive - 3415 最大独立集=结点数-最大匹配数 老师带大学生旅游 链接:https://vjudge.net/problem/UVA ...

  9. fzu Problem 2198 快来快来数一数 (快速幂+优化)

    题目链接: Problem  2198  快来快来数一数 题目描述: 给出n个六边形排成一排,a[i]代表i个六边形能组成的生成树个数,设定s[i]等于a[1]+a[2]+a[3]+....+a[i- ...

随机推荐

  1. 微信小程序如何动态增删class类名达到切换tabel栏的效果

    微信小程序和vue还是有点差别的,要想实现通过动态切换class来达到切换css的效果,请看代码: //wxml页面: <view class="tab"> <v ...

  2. javaScript今日总结

    javascript简单介绍ECMAScript 1.语法 2.变量:只能使用var定义,如果在函数的内容使用var定义,那么它是一个局部变量,如果没有使用var它是一个全局的.弱类型! 3.数据类型 ...

  3. 再次学习Git版本控制工具

    Git 究竟是怎样的一个系统呢?为什么在SVN作为版本控制工具已经非常流行的时候,还有Git这样一个版本控制工具呢?Git和SVN的区别在哪儿呢?Git优势又在哪呢?下面PHP程序员雷雪松带你一起详细 ...

  4. AutoCAD.NET中添加图形对象的基本步骤与实例演示

    https://blog.csdn.net/u011170962/article/details/37755201 要创建一个图形对象,需要遵循下面的步骤:1.得到创建对象的图形数据库:2.在内存中创 ...

  5. SpringCloud微服务小白入门之Eureka注册中心和服务中心搭建示例

    一.注册中心配置文件 代码复制区域: spring: application: name: spring-cloud-server server: port: 7000 eureka: instanc ...

  6. Kubernetes 再深入一点点

    kb master 运行如下容器 etcd 是 k8s 的核心, 主要负责k8s的核心数据处理及保存, 需要备份该数据,或者做集群 ,服务端口 2379(客户端服务) 2380(节点通信)kube-c ...

  7. 自然语言处理(NLP)的一般处理流程!

    1. 什么是NLP 自然语言处理 (Natural Language Processing) 是人工智能(AI)的一个子领域.自然语言处理是研究在人与人交互中以及在人与计算机交互中的语言问题的一门学科 ...

  8. Unity进阶之ET网络游戏开发框架 08-深入登录成功消息

    版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...

  9. 关于selenium自动化对iframe内嵌元素的处理

    今天上班闲来无聊,于是来练练自动化,结果碰上了可恶的iframe,楼主,以前也遇到过,但是一直也没搞懂怎么处理的,都是抄别人的代码,今天决定独立解决试试.首先先来认识什么是iframe,它就长下图这样 ...

  10. Eclipse配置初始化(自用)

    以上都是性能调优的配置,下面是其他常用的配置和优化 设置utf-8编码 window -> preferences -> General -> workplace中text file ...