MATLAB聚类有效性评价指标(外部)
MATLAB聚类有效性评价指标(外部)
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
更多内容,请看:MATLAB、聚类、MATLAB聚类有效性评价指标(外部 成对度量)、MATLAB: Clustering Algorithms
前提:数据的真实标签已知!
1. 归一化互信息(Normalized Mutual information)
定义
程序
function MIhat = nmi(A, B)
%NMI Normalized mutual information
% A, B: 1*N;
if length(A) ~= length(B)
error('length( A ) must == length( B)');
end
N = length(A);
A_id = unique(A);
K_A = length(A_id);
B_id = unique(B);
K_B = length(B_id);
% Mutual information
A_occur = double (repmat( A, K_A, 1) == repmat( A_id', 1, N ));
B_occur = double (repmat( B, K_B, 1) == repmat( B_id', 1, N ));
AB_occur = A_occur * B_occur';
P_A= sum(A_occur') / N;
P_B = sum(B_occur') / N;
P_AB = AB_occur / N;
MImatrix = P_AB .* log(P_AB ./(P_A' * P_B)+eps);
MI = sum(MImatrix(:));
% Entropies
H_A = -sum(P_A .* log(P_A + eps),2);
H_B= -sum(P_B .* log(P_B + eps),2);
%Normalized Mutual information
MIhat = MI / sqrt(H_A*H_B);
结果
>> A = [1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3];
>> B = [1 2 1 1 1 1 1 2 2 2 2 3 1 1 3 3 3];
>> MIhat = nmi(A, B) MIhat = 0.3646
2. Rand统计量(Rand index)
定义
程序
function [AR,RI,MI,HI]=RandIndex(c1,c2)
%RANDINDEX - calculates Rand Indices to compare two partitions
% ARI=RANDINDEX(c1,c2), where c1,c2 are vectors listing the
% class membership, returns the "Hubert & Arabie adjusted Rand index".
% [AR,RI,MI,HI]=RANDINDEX(c1,c2) returns the adjusted Rand index,
% the unadjusted Rand index, "Mirkin's" index and "Hubert's" index. if nargin < 2 || min(size(c1)) > 1 || min(size(c2)) > 1
error('RandIndex: Requires two vector arguments')
return
end C=Contingency(c1,c2); %form contingency matrix n=sum(sum(C));
nis=sum(sum(C,2).^2); %sum of squares of sums of rows
njs=sum(sum(C,1).^2); %sum of squares of sums of columns t1=nchoosek(n,2); %total number of pairs of entities
t2=sum(sum(C.^2)); %sum over rows & columnns of nij^2
t3=.5*(nis+njs); %Expected index (for adjustment)
nc=(n*(n^2+1)-(n+1)*nis-(n+1)*njs+2*(nis*njs)/n)/(2*(n-1)); A=t1+t2-t3; %no. agreements
D= -t2+t3; %no. disagreements if t1==nc
AR=0; %avoid division by zero; if k=1, define Rand = 0
else
AR=(A-nc)/(t1-nc); %adjusted Rand - Hubert & Arabie 1985
end RI=A/t1; %Rand 1971 %Probability of agreement
MI=D/t1; %Mirkin 1970 %p(disagreement)
HI=(A-D)/t1; %Hubert 1977 %p(agree)-p(disagree) function Cont=Contingency(Mem1,Mem2) if nargin < 2 || min(size(Mem1)) > 1 || min(size(Mem2)) > 1
error('Contingency: Requires two vector arguments')
return
end Cont=zeros(max(Mem1),max(Mem2)); for i = 1:length(Mem1)
Cont(Mem1(i),Mem2(i))=Cont(Mem1(i),Mem2(i))+1;
end
程序中包含了四种聚类度量方法:Adjusted Rand index、Rand index、Mirkin index、Hubert index。
结果
>> A = [1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3];
>> B = [1 2 1 1 1 1 1 2 2 2 2 3 1 1 3 3 3];
>> [AR,RI,MI,HI]=RandIndex(A,B) AR = 0.2429 RI = 0.6765 MI = 0.3235 HI = 0.3529
3. 参考文献
(simple) Tool for estimating the number of clusters
Mutual information and Normalized Mutual information 互信息和标准化互信息
MATLAB聚类有效性评价指标(外部)的更多相关文章
- MATLAB聚类有效性评价指标(外部 成对度量)
MATLAB聚类有效性评价指标(外部 成对度量) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 更多内容,请看:MATLAB: Clustering ...
- matlab 聚类
目前已知matlab的聚类方法有三种: 一.利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法: 二.层次聚类,该方法较为灵活,需要进行细节了 ...
- 各类聚类(clustering)算法初探
1. 聚类简介 0x1:聚类是什么? 聚类是一种运用广泛的探索性数据分析技术,人们对数据产生的第一直觉往往是通过对数据进行有意义的分组.很自然,首先要弄清楚聚类是什么? 直观上讲,聚类是将对象进行分组 ...
- 聚类算法与K-means实现
聚类算法与K-means实现 一.聚类算法的数学描述: 区别于监督学习的算法(回归,分类,预测等),无监督学习就是指训练样本的 label 未知,只能通过对无标记的训练样本的学习来揭示数据的内在规律和 ...
- 【分享】Matlab R2015a 发布啦!
本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html Matlab和C#混合编程文章目录:http://www.cnblogs.com ...
- Matlab聚类分析[转]
Matlab聚类分析[转] Matlab提供系列函数用于聚类分析,归纳起来具体方法有如下: 方法一:直接聚类,利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更 ...
- 聚类 高维聚类 聚类评估标准 EM模型聚类
高维数据的聚类分析 高维聚类研究方向 高维数据聚类的难点在于: 1.适用于普通集合的聚类算法,在高维数据集合中效率极低 2.由于高维空间的稀疏性以及最近邻特性,高维的空间中基本不存在数据簇. 在高维聚 ...
- 信号与系统实验序章0——MATLAB基础命令入门
本次开启新的系列,关于用Matlab实现常见信号和函数的生成和变换. 同时如果没有MATLAB基础,那么可以跟着本文一步一步学习Matlab的相关操作,本文旨在记录在信号与系统课程中MATLAB的学习 ...
- 2019-07-28【机器学习】无监督学习之聚类 DBSCAN方法及其应用 (在线大学生上网时间分析)
样本: import numpy as np import sklearn.cluster as skc from sklearn import metrics import matplotlib.p ...
随机推荐
- .NET Core 3.0 Preview 6中对ASP.NET Core和Blazor的更新
我们都知道在6月12日的时候微软发布了.NET Core 3.0的第6个预览版.针对.NET Core 3.0的发布我们国内的微软MVP-汪宇杰还发布的官翻版的博文进行了详细的介绍.具体的可以关注&q ...
- SpringAOP基础
例1.已知有这么一段代码,会打印出Hello public static void main(String[] args) { sayHello(); } public static void say ...
- 「SAP技术」如何看Z移动类型是复制哪个标准移动类型而创建的?
[SAP技术]SAP MM 如何看一个自定义移动类型是复制哪个标准移动类型而创建的? 比如项目上有一个自定义移动类型Z59,是复制551移动类型而定义的. OMJJ配置界面里,是有一个Ref字段.如下 ...
- 分析Android APK-反编译修改打包
2.2 这个章节的主要作用就是,修改一个别人的app,在里边增加一段自己的广告代码. 2.2.1 UAA 编译修改,工具安装配置之前讲过,无需再赘述.我们找到了一款游戏app的apk, 找到所在的ap ...
- web项目的初始搭建和intellij的tomcat的配置
点击web application
- [Go] 轻量服务器框架tcp的粘包问题 封包与拆包
tcp传输的数据是以流的形式传输的,因此就没有办法判断到哪里结束算是自己的一个消息,这样就会出现粘包问题,多个包粘在一起了 可以使用这样一个自定义的形式来解决,一个消息分为 head+body he ...
- leetcode题解:整数反转
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出 ...
- 【Golang基础】defer执行顺序
defer 执行顺序类似栈的先入后出原则(FILO) 一个defer引发的小坑:打开文件,读取内容,删除文件 // 原始问题代码 func testFun(){ // 打开文件 file, ...
- combination sum && combination sum II
1.Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), f ...
- 12. Go 语言文件处理
Go 语言文件处理 本章我们将带领大家深入了解一下 Go语言中的文件处理,重点在于文件而非目录或者通用的文件系统,特别是如何读写标准格式(如 XML 和 JSON 格式)的文件以及自定义的纯文本和二进 ...