参考链接:http://blog.csdn.net/yang843061497/article/details/38553765

绪论

假如我有2张美女图片,我想确认这2张图片中美女是否是同一个人。这太简单了,以我专研岛国动作片锤炼出来的火眼金睛只需轻轻扫过2张图片就可以得出结论。但是,如果我想让计算机来完成这个功能就困难重重了:再性感的美女在计算机眼中也只是0-1组成的数据而已。一种可行的方法是找出2张图片中的特征点,描述这些特征点的属性,然后比较这2副图片的特征点的属性。如果有足够多的特征点具有相同的属性,那么就可以认为2副图片中的美女是同一个人。

下面我们来看看ORB算法如何完成这这个过程。

1.特征点的检测

图像的特征点可以简单的理解为图像中比较显著显著的点,如轮廓点,较暗区域中的亮点,较亮区域中的暗点等。

原图                                            轮廓线(可能的特征点)

ORB采用FAST(features from accelerated segment test)算法来检测特征点。FAST核心思想就是找出那些卓尔不群的点,即拿一个点跟它周围的点比较,如果它和其中大部分的点都不一样就可以认为它是一个特征点。

备注:每个小方格代表一个像素,方格内的颜色只是为了便于区分,不代表该像素点的颜色。

FAST具体计算过程:

1. 从图片中选取一个像素点P,下面我们将判断它是否是一个特征点。我们首先把它的密度(即灰度值)设为Ip。

2. 设定一个合适的阙值t :当2个点的灰度值之差的绝对值大于t时,我们认为这2个点不相同。

3. 考虑该像素点周围的16个像素。(见上图)

4. 现在如果这16个点中有连续的n个点都和点不同,那么它就是一个角点。 这里n设定为12。

5. 我们现在提出一个高效的测试,来快速排除一大部分非特征点的点。该测试仅仅检查在位置1、9、5和13四个位置的像素(首先检查1和9,看它们是否和点相同。如果是,再检查5和13)。如果是一个角点,那么上述四个像素点中至少有3个应该和点相同。如果都不满足,那么不可能是一个角点。

图中红色的点为使用FAST算法找到的特征点。

2.特征点的描述

2.1计算特征描述子

得到特征点后我们需要以某种方式F描述这些特征点的属性。这些属性的输出我们称之为该特征点的描述子(Feature DescritorS).ORB采用BRIEF算法来计算一个特征点的描述子。BRIEF算法的核心思想是在关键点P的周围以一定模式选取N个点对,把这N个点对的比较结果组合起来作为描述子。

具体来讲分为以下几步。

1.以关键点P为圆心,以d为半径做圆O。

2.在圆O内某一模式选取N个点对。这里为方便说明,N=4,实际应用中N可以取512.

假设当前选取的4个点对如上图所示分别标记为:

         

3.定义操作T

4.分别对已选取的点对进行T操作,将得到的结果进行组合。

假如:

则最终的描述子为:1011

2.2理想的特征点描述子应该具备的属性

在现实生活中,我们从不同的距离,不同的方向、角度,不同的光照条件下观察一个物体时,物体的大小,形状,明暗都会有所不同。但我们的大脑依然可以判断它是同一件物体。理想的特征描述子应该具备这些性质。即,在大小、方向、明暗不同的图像中,同一特征点应具有足够相似的描述子,称之为描述子的可复现性。

当以某种理想的方式分别计算上图中红色点的描述子时,应该得出同样的结果。即描述子应该对光照(亮度)不敏感,具备尺度一致性(大小 ),旋转一致性(角度)等。

上面我们用BRIEF算法得到的描述子并不具备以上这些性质。因此我们得想办法改进我们的算法。ORB并没有解决尺度一致性问题,在OpenCV的ORB实现中采用了图像金字塔来改善这方面的性能。ORB主要解决BRIEF描述子不具备旋转不变性的问题。

回顾一下BRIEF描述子的计算过程:在当前关键点P周围以一定模式选取N个点对,组合这N个点对的T操作的结果就为最终的描述子。当我们选取点对的时候,是以当前关键点为原点,以水平方向为X轴,以垂直方向为Y轴建立坐标系。当图片发生旋转时,坐标系不变,同样的取点模式取出来的点却不一样,计算得到的描述子也不一样,这是不符合我们要求的。因此我们需要重新建立坐标系,使新的坐标系可以跟随图片的旋转而旋转。这样我们以相同的取点模式取出来的点将具有一致性。

打个比方,我有一个印章,上面刻着一些直线。用这个印章在一张图片上盖一个章子,图片上分处直线2头的点将被取出来。印章不变动的情况下,转动下图片,再盖一个章子,但这次取出来的点对就和之前的不一样。为了使2次取出来的点一样,我需要将章子也旋转同一个角度再盖章。(取点模式可以认为是章子上直线的分布情况)

ORB在计算BRIEF描述子时建立的坐标系是以关键点为圆心,以关键点和取点区域的形心的连线为X轴建立2维坐标系。

在图1中,P为关键点。圆内为取点区域,每个小格子代表一个像素。现在我们把这块圆心区域看做一块木板,木板上每个点的质量等于其对应的像素值。根据积分学的知识我们可以求出这个密度不均匀木板的质心Q。计算公式如下。其中R为圆的半径。

我们知道圆心是固定的而且随着物体的旋转而旋转。当我们以PQ作为坐标轴时(图2),在不同的旋转角度下,我们以同一取点模式取出来的点是一致的。这就解决了旋转一致性的问题。

3.特征点的匹配

ORB算法最大的特点就是计算速度快 。 这首先得益于使用FAST检测特征点,FAST的检测速度正如它的名字一样是出了名的快。再次是使用BRIEF算法计算描述子,该描述子特有的2进制串的表现形式不仅节约了存储空间,而且大大缩短了匹配的时间。

例如特征点A、B的描述子如下。

A:10101011

B:10101010

我们设定一个阈值,比如80%。当A和B的描述子的相似度大于90%时,我们判断A,B是相同的特征点,即这2个点匹配成功。在这个例子中A,B只有最后一位不同,相似度为87.5%,大于80%。则A和B是匹配的。

我们将A和B进行异或操作就可以轻松计算出A和B的相似度。而异或操作可以借组硬件完成,具有很高的效率,加快了匹配的速度。

OpenCV中ORB算法的匹配结果

总结与思考:

ORB和SIFT特征话均是对Transformation invariant feature的探索,两者不同的是:

(1)SIFT特征是找到图像中的极值点作为特征点,然后选择以特征点为中心的一个域作为描述子,构建这个描述子的梯度直方图,从而获得这个特征点的位置,梯度方向和梯度值,从而用这些特征点来描述这幅图像,这种特征具有尺度不变性、旋转不变性、光照不变性等等;

(2)ORB特征也是找特征点,也是与周围的点作比较,但它没有用极值这一概念,而只是用了差值大小作为选取特征点的标准,然后在这个ORB特征的周围一个邻域选取N对点借助某个函数得到一串01序列作为这幅图像其中的的描述子,然后这些描述子构成最终的特征,这种特征没有尺度不变性,但具有旋转不变性;

我个人觉得ORB特征相对于SIFT的缺点:它在第一阶段选取特征点时使用差值作为选取标准而不像SIFT用极值作为选取标准,所以ORB不像SIFT那样具有尺度不变性(opencv中加入了图像金字塔来弥补)

但ORB找到特征点后是用特征点邻域的N对点作为描述子,利用了上下文语义,而SIFT则只利用了特征点梯度描述,不好判定谁好谁坏,各有千秋把;

本文只对ORB算法核心思想做一个解读。在具体的实现中还涉及到很多的细节及优化问题。了解更多的细节请参考下面一些资料。

http://download.csdn.net/detail/yang843061497/7785917

http://www.cvchina.info/2011/07/04/whats-orb/ 

http://blog.sina.com.cn/s/blog_916b71bb0100w9al.html

ORB feature(O for orientation)的更多相关文章

  1. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  2. 在vs环境中跑动sift特征提取(代码部分)

    因为在前两天的学习中发现.在opencv环境中跑动sift特征点提取还是比较困难的. 所以在此,进行记述. 遇到的问题分别有,csdn不愿意花费积分.配置gtk困难.教程海量然而能跑者鲜.描述不详尽等 ...

  3. 基于SIFT+Kmeans+LDA的图片分类器的实现

    原地址:http://www.cnblogs.com/freedomshe/archive/2012/04/24/2468747.html 题记:2012年4月1日回到家,南大计算机研究僧复试以后,等 ...

  4. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

  5. ML二:NNSearch数据结构--二叉树

    wiki百科:http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E4%B9%A0 opencv学习笔记--二杈决策树: ...

  6. ORB-SLAM2 地图加载2

    补充SystemSetting和InitKeyFrame两个类的代码.实际上,由于是通过SystemSetting来读取的相机内参以及ORB特征参数,所以就可以将Tracking.cc中关于读取内参的 ...

  7. 一个基于深度学习回环检测模块的简单双目 SLAM 系统

    转载请注明出处,谢谢 原创作者:Mingrui 原创链接:https://www.cnblogs.com/MingruiYu/p/12634631.html 写在前面 最近在搞本科毕设,关于基于深度学 ...

  8. opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较

    opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_ ...

  9. ORB特征点检测

    Oriented FAST and Rotated BRIEF www.cnblogs.com/ronny   这篇文章我们将介绍一种新的具有局部不变性的特征 -- ORB特征,从它的名字中可以看出它 ...

随机推荐

  1. Sublime text3 插件LiveReload 实现实时预览

    1.首先要安装插件LiveReload Sublime text3. 菜单 preferences->packages control,输入install.. 回车,输入LiveReload回车 ...

  2. 【转】NFS服务配置与mount nfs时-o nolock的问题

    NFS文件系统挂载步骤 1.创建共享目录 #mkdir /home/hellolinux/nfs 2.创建或修改/etc/exports文件 #vi /etc/exports home/helloli ...

  3. luogu2279 消防局的设立 (贪心)

    按点的深度从大到小排序,每次取出深度最大的那个点,如果它还没被覆盖,就在它爷爷上放一个消防局,这样一定是最优的 为了判定是否被覆盖,可以记录从某点的子树中到这个点的最近消防局的距离dis[](如果没有 ...

  4. Java -- JDBC 学习--数据库连接池

    JDBC数据库连接池的必要性 在使用开发基于数据库的web程序时,传统的模式基本是按以下步骤: 在主程序(如servlet.beans)中建立数据库连接. 进行sql操作 断开数据库连接. 这种模式开 ...

  5. P3507 GRA-The Minima Game

    题目大意: 给出N个正整数,AB两个人轮流取数,A先取.每次可以取任意多个数,直到N个数都被取走.每次获得的得分为取的数中的最小值,A和B的策略都是尽可能使得自己的得分减去对手的得分更大.在这样的情况 ...

  6. CF1080

    emmmm......ouuan大佬上紫了,我却没打...... 首先吐槽一波家长会和机房锁门,害我只能来打虚拟赛. 写了abcd四题,还是被ouuan大佬吊打....... 264名,应该能上分吧. ...

  7. Spring Boot Actuator的端点

    Spring Boot Actuator的关键特性是在应用程序里提供众多Web端点,通过它们了解应用程序 运行时的内部状况.有了Actuator,你可以知道Bean在Spring应用程序上下文里是如何 ...

  8. 惊喜的gift

    情侣的饰品吧!我之前在淘宝上买了一套,挺好的,很好看呢!男的手链,女的项链,手链需要项链的钥匙才能打得开,女孩子应该都会很喜欢的吧!至少我很喜欢!而且价格也不贵,150块人民币都不到,很适合当生日礼物 ...

  9. 浅谈js的数字格式

    除了正常我们常用的十进制(如5,8,12.123等),js还可以直接表示2.8.16进制 1.二进制 二进制是以0b开头 0b10; 2.八进制 八进制是以0开头 010: 3.十六进制 十六进制是以 ...

  10. windows下boost编译(vs2010)

    1.首先在官网上下一个boost的版本( http://www.boost.org): 2.解压到D:\mine (D:\mine\boost_1_66_0) 3.编译安装boost boost_1_ ...