Kibana --> Getting Started -->Building your own dashboard
https://www.elastic.co/guide/en/kibana/6.6/tutorial-build-dashboard.html
Building your own dashboard
Ready to load some data and build a dashboard? This tutorial shows you how to:
- Load a data set into Elasticsearch
- Define an index pattern
- Discover and explore the data
- Visualize the data
- Add visualizations to a dashboard
- Inspect the data behind a visualization
Loading sample data
This tutorial requires three data sets:
- The complete works of William Shakespeare, suitably parsed into fields. Download
shakespeare.json
. - A set of fictitious accounts with randomly generated data. Download
accounts.zip
. - A set of randomly generated log files. Download
logs.jsonl.gz
.
Two of the data sets are compressed. To extract the files, use these commands:
unzip accounts.zip
gunzip logs.jsonl.gz
Structure of the data sets
The Shakespeare data set has this structure:
{
"line_id": INT,
"play_name": "String",
"speech_number": INT,
"line_number": "String",
"speaker": "String",
"text_entry": "String",
}
The accounts data set is structured as follows:
{
"account_number": INT,
"balance": INT,
"firstname": "String",
"lastname": "String",
"age": INT,
"gender": "M or F",
"address": "String",
"employer": "String",
"email": "String",
"city": "String",
"state": "String"
}
The logs data set has dozens of different fields. Here are the notable fields for this tutorial:
{
"memory": INT,
"geo.coordinates": "geo_point"
"@timestamp": "date"
}
Set up mappings
Before you load the Shakespeare and logs data sets, you must set up mappings for the fields.
Mappings divide the documents in the index into logical groups and specify the characteristics of the fields.
These characteristics include the searchability of the field and whether it’s tokenized, or broken up into separate words.
In Kibana Dev Tools > Console, set up a mapping for the Shakespeare data set:
PUT /shakespeare
{
"mappings": {
"doc": {
"properties": {
"speaker": {"type": "keyword"},
"play_name": {"type": "keyword"},
"line_id": {"type": "integer"},
"speech_number": {"type": "integer"}
}
}
}
}
This mapping specifies field characteristics for the data set:
- The
speaker
andplay_name
fields are keyword fields. These fields are not analyzed. The strings are treated as a single unit even if they contain multiple words. - The
line_id
andspeech_number
fields are integers.
响应
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "shakespeare"
}
The logs data set requires a mapping to label the latitude and longitude pairs as geographic locations by applying the geo_point
type.
PUT /logstash-2015.05.18
{
"mappings": {
"log": {
"properties": {
"geo": {
"properties": {
"coordinates": {
"type": "geo_point"
}
}
}
}
}
}
}
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "logstash-2015.05.18"
}
The accounts data set doesn’t require any mappings.
查询一下当前的所有indices
GET /_cat/indices?v HTTP/1.1
Host: localhost:9200
新导入的logstash-2015.05.18,logstash-2015.05.19,logstash-2015.05.20这个三个index的docs.count的个数都是0。
bank是之前在学习elastic search时候导入的
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open logstash-2015.05. dL2ZaIelR_uvKMnPYy_8Eg .2kb .2kb
yellow open logstash-2015.05. M1PWnqXLRgClt-iwqN4OUg .2kb .2kb
yellow open customer p6H8gEOdQAWBuSN2HDEjZA .4kb .4kb
yellow open shakespeare I8mqiFkkTdK9IlcarIZA4A .2kb .2kb
yellow open bank l45mhl-7QNibqbmbi2Jmbw .1kb .1kb
green open .kibana_1 CUsQj9zkSCSC-XiDJgXYQQ .6kb .6kb
yellow open logstash-2015.05. 14rDFdQFTQK-GNgDXtlmeQ .2kb .2kb
Load the data sets
At this point, you’re ready to use the Elasticsearch bulk API to load the data sets:
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary @accounts.json
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/shakespeare/doc/_bulk?pretty' --data-binary @shakespeare_6.0.json
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/_bulk?pretty' --data-binary @logs.jsonl
Or for Windows users, in Powershell:
Invoke-RestMethod "http://localhost:9200/bank/account/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "accounts.json"
Invoke-RestMethod "http://localhost:9200/shakespeare/doc/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "shakespeare_6.0.json"
Invoke-RestMethod "http://localhost:9200/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "logs.jsonl"
可以保存为一个ps1的脚本文件,然后直接运行这个脚本文件进行导入
These commands might take some time to execute, depending on the available computing resources.
Verify successful loading:
再次查询所有的index
GET /_cat/indices?v
Your output should look similar to this:
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open logstash-2015.05. dL2ZaIelR_uvKMnPYy_8Eg .5mb .5mb
yellow open logstash-2015.05. M1PWnqXLRgClt-iwqN4OUg .1mb .1mb
yellow open customer p6H8gEOdQAWBuSN2HDEjZA .4kb .4kb
yellow open shakespeare I8mqiFkkTdK9IlcarIZA4A .5mb .5mb
yellow open bank l45mhl-7QNibqbmbi2Jmbw .1kb .1kb
green open .kibana_1 CUsQj9zkSCSC-XiDJgXYQQ .6kb .6kb
yellow open logstash-2015.05. 14rDFdQFTQK-GNgDXtlmeQ .6mb .6mb
Defining your index patterns
Index patterns tell Kibana which Elasticsearch indices you want to explore. An index pattern can match the name of a single index, or include a wildcard (*) to match multiple indices.
For example, Logstash typically creates a series of indices in the format logstash-YYYY.MMM.DD
. To explore all of the log data from May 2018, you could specify the index pattern logstash-2018.05*
.
You’ll create patterns for the Shakespeare data set, which has an index named shakespeare,
and the accounts data set, which has an index named bank.
These data sets don’t contain time-series data.
- In Kibana, open Management, and then click Index Patterns.
- If this is your first index pattern, the Create index pattern page opens automatically. Otherwise, click Create index pattern in the upper left.
Enter
shakes*
in the Index pattern field.
Kibana --> Getting Started -->Building your own dashboard的更多相关文章
- 使用Kibana 分析Nginx 日志并在 Dashboard上展示
一.Kibana之Visualize 功能 在首页上Visualize 标签页用来设计可视化图形.你可以保存之前在discovery中的搜索来进行画图,然后保存该visualize,或者加载合并到 d ...
- Kibana:如何周期性地为 Dashboard 生成 PDF Report
转载自:https://blog.csdn.net/UbuntuTouch/article/details/108449775 按照上面的方式填写.记得把之前的 URL 拷贝到 webhook 下的 ...
- How To Use Logstash and Kibana To Centralize Logs On CentOS 6
原文链接:https://www.digitalocean.com/community/tutorials/how-to-use-logstash-and-kibana-to-centralize-l ...
- 性能优化工具 MVC Mini Profiler
性能优化工具 MVC Mini Profiler MVC MiniProfiler是Stack Overflow团队设计的一款对ASP.NET MVC.WebForm 以及WCF 的性能分析的小程 ...
- ELK学习笔记之F5利用EELK进行应用数据挖掘系列(2)-DNS
0x00 概述 很多客户使用GTM/DNS为企业业务提供动态智能解析,解决应用就近性访问.优选问题.对于已经实施多数据中心双活的客户,则会使用GSLB提供双活流量调度.DNS作为企业业务访问的指路者, ...
- ELK+Redis 解析Nginx日志
一.ELK简介 Elk是指logstash,elasticsearch,kibana三件套,我们一般使用它们做日志分析. ELK工作原理图: 简单来讲ELK具体的工作流程就是客户端的logstash ...
- [Metricbeat] Metricbeat监控golang服务器
0x0 前言 最近这几天研究了一下ElasticSearch相关的技术栈.前面一篇转发了别人些的非常详细的ElasticSearch和Kibana搭建的过程.发现Elastic家族还有Metricbe ...
- I am a legend: Hacking Hearthstone with machine-learning Defcon talk wrap-up
I am a legend: Hacking Hearthstone with machine-learning Defcon talk wrap-up: video and slides avail ...
- Building real-time dashboard applications with Apache Flink, Elasticsearch, and Kibana
https://www.elastic.co/cn/blog/building-real-time-dashboard-applications-with-apache-flink-elasticse ...
随机推荐
- mysql优化(二)
一.客户端分担. 1.大量的复杂的运算放在客户端处理. 什么是复杂运算,一般我认为是一秒钟CPU只能做10万次以内的运算.如含小数的对数及指数运算.三角函数.3DES及BASE64数据加密算法等等.如 ...
- 转 VS2010 RDLC 横向合并时“未正确设置 tablix“Tablix1”的 FixedData 属性”错误解决方法 .
最近在使用Rdlc做报表打印,有些报表的表头需要合并表头.Rdlc本身提供了横向合并的工具,但是在实际合并的时候,会出现“未正确设置 tablix“Tablix1”的 FixedData 属性.除非在 ...
- html5-css边框img
div{ width: 500px; height: 300px; background: rgb(122,30,60); border:15px solid black; ...
- scrapy:get cookie from response
scrapy shell fetch('your_url') response.headers.getlist("Set-Cookie")https://stackoverflow ...
- jack welch:“你们知道了,但是我们做到了”
一.我们发现,只要我们敢于相信自己,敢于朝着那些看似不可能的目标不懈努力,最终会如愿以偿,个人的领袖形象也将因此而确立. 二.一个领导者必须要有魄力.对我来说,这就是一个人能否领导一项业务的分水岭. ...
- 蒙特卡洛(Monte Carlo)法求定积分
https://blog.csdn.net/baimafujinji/article/details/53869358
- Linux基础命令---显示文本look
look 显示文件中以特定字符串开始的行.在look执行二进制搜索时,必须对文件中的行进行排序.如果未指定文件,则使用文件“/usr/share/dict/words“,只比较字母数字字符,忽略字母字 ...
- 结合sklearn的可视化工具Yellowbrick:超参与行为的可视化带来更优秀的实现
https://blog.csdn.net/qq_34739497/article/details/80508262 Yellowbrick 是一套名为「Visualizers」的视觉诊断工具,它扩展 ...
- m3u8文件下载合并的一种方法
# -*- coding: utf-8 -*- """ Created on Wed Mar 14 15:09:14 2018 @author: Y "&quo ...
- pyglet self.
import pyglet class T(pyglet.window.Window): def __init__(self): super(T, self).__init__() self.play ...