bzoj3529: [Sdoi2014]数表 莫比乌斯反演
题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\)
先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\sum_{x=1}^{min(n,m)}f(x)\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==x]\)
可以发现右侧就是最裸的莫比乌斯反演,那么\(\sum_{x=1}^{min(n,m)}f(x)\sum_{d=1}^{min(\lfloor \frac{n}{x} \rfloor,\lfloor \frac{m}{x} \rfloor)}\mu(d)*{\lfloor \frac{n}{x*d} \rfloor}*{\lfloor \frac{m}{x*d} \rfloor}\)
考虑枚举q=x*d,那么\(\sum_{q=1}^{min(n,m)}{\lfloor \frac{n}{q} \rfloor}*{\lfloor \frac{m}{q} \rfloor}\sum_{x|q}f(x)*\mu(\frac{q}{x})\)
发现后面是个狄利克雷卷积\(g=f*\mu\),f(x)是积性函数可以线性预处理,对于a的限制我们可以离线询问按a排序,然后维护一个树状数组每次扫到询问就把g更新到树状数组中,然后整除分块更新答案
取模可以直接爆int,然后&0x7fffffff,即(1<<32)-1
/**************************************************************
Problem: 3529
User: walfy
Language: C++
Result: Accepted
Time:3404 ms
Memory:6076 kb
****************************************************************/
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=400000+10,inf=0x3f3f3f3f;
int prime[N],cnt,sum[N],mi[N],mu[N];
bool mark[N];
void init()
{
sum[1]=mu[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-1,sum[i]=i+1,mi[i]=i+1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
mi[i*prime[j]]=mi[i]*prime[j]+1;
sum[i*prime[j]]=sum[i]/mi[i]*mi[i*prime[j]];
mu[i*prime[j]]=0;
break;
}
sum[i*prime[j]]=sum[i]*(prime[j]+1);
mu[i*prime[j]]=-mu[i];
mi[i*prime[j]]=1+prime[j];
}
}
}
struct bit{
int sum[N];
void update(int i,int v)
{
for(;i<N;i+=i&(-i))sum[i]+=v;
}
int query(int i)
{
int ans=0;
for(;i;i-=i&(-i))ans+=sum[i];
return ans;
}
}b;
int ans[N];
struct node{
int n,m,a,id;
bool operator <(const node&rhs)const{
return a<rhs.a;
}
}p[N];
struct point{
int d,id;
bool operator <(const point &rhs)const{
return d<rhs.d;
}
}f[N];
int main()
{
init();
int q,ma=0;scanf("%d",&q);
for(int i=1;i<=q;i++)
{
scanf("%d%d%d",&p[i].n,&p[i].m,&p[i].a),p[i].id=i;
if(p[i].n>p[i].m)swap(p[i].n,p[i].m);
ma=MAX(ma,p[i].n);
}
for(int i=1;i<=ma;i++)f[i].d=sum[i],f[i].id=i;
sort(p+1,p+1+q);
sort(f+1,f+1+ma);
for(int now=0,i=1;i<=q;i++)
{
while(now+1<=ma&&f[now+1].d<=p[i].a)
{
now++;
for(int j=f[now].id;j<=ma;j+=f[now].id)
b.update(j,f[now].d*mu[j/f[now].id]);
}
for(int j=1,k;j<=p[i].n;j=k+1)
{
k=MIN(p[i].n/(p[i].n/j),p[i].m/(p[i].m/j));
ans[p[i].id]+=(p[i].n/j)*(p[i].m/j)*(b.query(k)-b.query(j-1));
}
ans[p[i].id]&=0x7fffffff;
}
for(int i=1;i<=q;i++)
printf("%d\n",ans[i]);
return 0;
}
/********************
********************/
bzoj3529: [Sdoi2014]数表 莫比乌斯反演的更多相关文章
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)
Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)
题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...
- BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组
Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组
[BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...
- 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组
题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
随机推荐
- 论文笔记之:Learning Cross-Modal Deep Representations for Robust Pedestrian Detection
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection 2017-04-11 19:40:22 Moti ...
- it做形式主语的句子
1. it was considerate of you to visit my mother every day and (to) bring me your notes to help me wi ...
- 微服务架构与实践3_api
场景分析 描述产品服务,基于REST的接口 表述性状态转移(Representational State Transfer,REST) 任务拆分 将整体要做的工作内容划分成小的任务: 统一时间聚焦一个 ...
- awk 基础入门
简介 awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再 ...
- 原生js总结
数据类型 基本类型值包括: undefined,null,Boolean,Number和String,这些类型分别在内存中占有固定的大小空间,它们的值保存在栈空间,我们通过按值来访问的. 引用类型包括 ...
- python 删除文件夹
只能删除空文件夹,删除非空文件夹会报错 >>> import os >>> os.rmdir("/tmp/ssh-GyoPWOFZ47") Tr ...
- Java String删除字符串中间的某部分
当你想删除字符串中的某部分时,java中并没有直接提供相关的方法,比如想删除 "cout<<\"Hello world\"<<endl" ...
- split函数
b="aa,:bb:c,c"a1,a2,a3=b.split(":") #以:为分隔符,分成3个字符串
- Unity---资源管理中不同资源的路径获取方式
1.首先需要先了解两个知识点: Unity内置的文件路径获取方式.windows的Directory.GetFiles文件获取方式: 1>Unity内置的文件路径获取方式,一下是官方解释:h ...
- RabbitMQ消息发布时的权衡
在进行本篇文章的学习之前,你需要先阅读 https://www.cnblogs.com/duanjt/p/10057330.html.以便对Java访问RabbitMQ的基础用法有所了解. 一.失败通 ...