ZOJ 3609 Modular Inverse(扩展欧几里得)题解
题意:求乘法逆元最小正正数解
思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x。那么通过EXGcd得到特解x1,最小正解x1 = x1 % m,如果x1 <=0,x1 += m,注意m是负数时取绝对值,因为是正解,所以不能用(x1%m+m)%m。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define LS(n) node[(n)].ch[0]
#define RS(n) node[(n)].ch[1]
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = + ; ll ex_gcd(ll a, ll b, ll &x, ll &y){
ll d, t;
if(b == ){
x = ;
y = ;
return a;
}
d = ex_gcd(b, a%b, x, y);
t = x-a/b*y;
x = y;
y = t;
return d;
}
int main(){
ll a, m, x, y, T;
scanf("%lld", &T);
while(T--){
scanf("%lld%lld", &a, &m);
ll d = ex_gcd(a, m, x, y);
if( % d != ){
printf("Not Exist\n");
}
else{
x = x % m;
if(x <= ) x += m;
printf("%lld\n", x);
}
}
return ;
}
ZOJ 3609 Modular Inverse(扩展欧几里得)题解的更多相关文章
- ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- ZOJ——3609 Modular Inverse
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- ZOJ 3609 Modular Inverse(扩展欧几里德)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 The modular modular multiplicat ...
- ZOJ 3609 Modular Inverse
点我看题目 题意 : 这个题是求逆元的,怎么说呢,题目看着很别扭....就是给你a和m,让你求一个最小的x满足a-1≡x (mod m).或者ax≡1 (mod m).通俗点说呢,就是找一个最小的x, ...
- [POJ1845&POJ1061]扩展欧几里得应用两例
扩展欧几里得是用于求解不定方程.线性同余方程和乘法逆元的常用算法. 下面是代码: function Euclid(a,b:int64;var x,y:int64):int64; var t:int64 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
随机推荐
- Unity之如何从fbx提取Animation clip文件
见代码: static void CreateAnim(string fbx, string target) { AnimationClip src = AssetDatabase.LoadAsset ...
- Spring MVC / Boot
https://stackoverflow.com/questions/5690228/spring-mvc-how-to-return-image-in-responsebody http://hw ...
- node.js中express模块创建服务器和http模块客户端发请求
首先下载express模块,命令行输入 npm install express 1.node.js中express模块创建服务端 在js代码同文件位置新建一个文件夹(www_root),里面存放网页文 ...
- MySQL练习题之参考答案
1.创建表结构和数据 /* Navicat Premium Data Transfer Source Server : localhost Source Server Type : MySQL Sou ...
- arc 092C 2D Plane 2N Points
题意: 有n个红色的点和n个蓝色的点,如果红色的点的横坐标和纵坐标分别比蓝色的点的横坐标和纵坐标小,那么这两个点就可以成为一对友好的点. 问最多可以形成多少对友好的点. 思路: 裸的二分图匹配,对于满 ...
- centos中yum命令删除还原的补救方法介绍
前言 yum,是Yellow dog Updater Modified的简称,起初是由yellow dog这一发行版的开发者Terra Soft研发,用python写成,那时还叫做yup(yellow ...
- JavaScript 基础,登录验证
1.<script></script>的三种用法: a.放在<body>中 b.放在<head>中 c.放在外部JS文件中 <!DOCTYPE h ...
- java踩坑
1. java判断两个字符串是否相等用equals 2. java只传递指针遇到的坑: 1 import java.util.*; 2 3 public class mapTest { 4 publi ...
- ID3决策树
决策树 优点:计算复杂度不高,输出结果易于理解,对中间值的缺少不敏感,可以处理不相关特征数据 缺点:过拟合 决策树的构造 熵:混乱程度,信息的期望值 其中p(xi)是选择分类的概率 熵就是计算所有类别 ...
- 安卓apk的编译与反编译
原文:https://blog.csdn.net/baidu_33870664/article/details/80186945 android基于java的,而java反编译工具很强悍,所以对正常a ...