[BZOJ2051]A Problem For Fun/[BZOJ2117]Crash的旅游计划/[BZOJ4317]Atm的树

题目大意:

给出一个\(n(n\le10^5)\)个结点的树,每条边有一个正整数权值\(w_i(w_i\le10^4)\),定义两个结点的距离为连接这两个结点路径上边权的和。对于每个结点\(i\),它到其他\(n-1\)个结点都有一个距离,将这些距离从小到大排序,输出第\(k\)个距离。

思路:

重心剖分预处理每个重心管辖范围内从重心出发能够组成的所有距离。询问时二分答案\(k\),再对于每一级重心二分出\(<k\)的距离的个数。注意去重。

时间复杂度\(\mathcal O(n\log^3n)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1;
struct Graph {
struct Edge {
int to,w;
};
std::vector<Edge> e[N];
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
}
};
Graph g1,g2;
bool mark[N];
std::vector<int> v[N],v2[N];
int n,m,size[N],max[N],root,all;
void get_root(const int &x) {
max[x]=0;
size[x]=1;
mark[x]=true;
for(unsigned i=0;i<g1.e[x].size();i++) {
const int &y=g1.e[x][i].to;
if(mark[y]) continue;
get_root(y);
size[x]+=size[y];
max[x]=std::max(max[x],size[y]);
}
max[x]=std::max(max[x],all-size[x]);
if(max[x]<max[root]) root=x;
mark[x]=false;
}
inline void get_root(const int &x,const int &size) {
root=0;
all=size;
get_root(x);
}
void dfs(const int &x,const int &par,const int &dis,std::vector<int> &v,const bool type) {
if(!type) g2.add_edge(x,root,dis);
v.push_back(dis);
for(unsigned i=0;i<g1.e[x].size();i++) {
const int &y=g1.e[x][i].to;
if(y==par||mark[y]) continue;
dfs(y,x,dis+g1.e[x][i].w,v,type);
}
}
void solve(const int x) {
mark[x]=true;
dfs(x,0,0,v[x],0);
std::sort(v[x].begin(),v[x].end());
for(unsigned i=0;i<g1.e[x].size();i++) {
const int &y=g1.e[x][i].to;
if(mark[y]) continue;
get_root(y,size[y]);
dfs(y,x,g1.e[x][i].w,v2[root],1);
std::sort(v2[root].begin(),v2[root].end());
solve(root);
}
}
inline int ord(int x,int l) {
int ret=0;
for(register unsigned i=0;i<g2.e[x].size();i++) {
const int &y=g2.e[x][i].to;
ret+=std::lower_bound(v[y].begin(),v[y].end(),l-g2.e[x][i].w)-v[y].begin();
if(i+1!=g2.e[x].size()) ret-=std::lower_bound(v2[y].begin(),v2[y].end(),l-g2.e[x][i+1].w)-v2[y].begin();
}
return ret;
}
int main() {
max[0]=INT_MAX;
n=getint(),m=getint();
for(register int i=1;i<n;i++) {
const int u=getint(),v=getint(),w=getint();
g1.add_edge(u,v,w);
g1.add_edge(v,u,w);
}
get_root(1,n);
solve(root);
for(register int i=1;i<=n;i++) {
std::reverse(g2.e[i].begin(),g2.e[i].end());
}
for(register int i=1;i<=n;i++) {
int l=1,r=(n-1)*10000;
while(l<=r) {
const int mid=(l+r)>>1;
if(ord(i,mid)<=m) {
l=mid+1;
} else {
r=mid-1;
}
}
printf("%d\n",l-1);
}
return 0;
}

[BZOJ2051]A Problem For Fun/[BZOJ2117]Crash的旅游计划/[BZOJ4317]Atm的树的更多相关文章

  1. [BZOJ2117]Crash的旅游计划

    Description 眼看着假期就要到了,Crash由于长期切题而感到无聊了,因此他决定利用这个假期和好友陶陶一起出去旅游. Crash和陶陶所要去的城市里有N (N > 1) 个景点,Cra ...

  2. 【BZOJ2117】 [2010国家集训队]Crash的旅游计划

    [BZOJ2117] [2010国家集训队]Crash的旅游计划 Description 眼看着假期就要到了,Crash由于长期切题而感到无聊了,因此他决定利用这个假期和好友陶陶一起出去旅游. Cra ...

  3. BZOJ4317Atm的树&BZOJ2051A Problem For Fun&BZOJ2117[2010国家集训队]Crash的旅游计划——二分答案+动态点分治(点分树套线段树/点分树+vector)

    题目描述 Atm有一段时间在虐qtree的题目,于是,他满脑子都是tree,tree,tree…… 于是,一天晚上他梦到自己被关在了一个有根树中,每条路径都有边权,一个神秘的声音告诉他,每个点到其他的 ...

  4. BZOJ2117: [2010国家集训队]Crash的旅游计划

    裸点分,点分树每层维护有序表,查询二分,复杂度$O(nlog^3n)$. #include<bits/stdc++.h> #define M (u+v>>1) #define ...

  5. [2010国家集训队]Crash的旅游计划

    Description 眼看着假期就要到了,Crash由于长期切题而感到无聊了,因此他决定利用这个假期和好友陶陶一起出去旅游. Crash和陶陶所要去的城市里有N (N > 1) 个景点,Cra ...

  6. BZOJ 2117: [2010国家集训队]Crash的旅游计划 动态点分治+二分

    感觉现在写点分治可快了~ 二分答案,就可以将求第 $k$ 大转换成一个判断问题,直接拿点分树判断一下就行了. #include <cstdio> #include <vector&g ...

  7. Crash的旅行计划

    除草了.. Crash的旅行计划 [问题描述] 过不了多久,Crash就要迎来他朝思暮想的暑假.在这个暑假里,他计划着到火星上旅游.在火星上有N个旅游景点,Crash用1至N这N个正整数对这些景点标号 ...

  8. BZOJ2051——A Problem For Fun

    0.题意:给出一个N个结点的树,每条边有一个正整数权值,定义两个结点的距离为连接这两个结点路径上边权的和.对于每个结点i,它到其他N-1个结点都有一个距离,将这些距离从小到大排序,输出第K个距离. 1 ...

  9. BZOJ2051 : A Problem For Fun

    树的点分治,将点分治的过程记录下来,每一个分治结构按到分治中心的距离维护所有点. 对于一个点二分答案,然后在$O(\log n)$个分治结构中二分查找,时间复杂度$O(n\log^3n)$. #inc ...

随机推荐

  1. awk对列/行进行统计求和【转】

    场景]--类似于excel中的sum函数对列/行进行统计求和 A01 A02 A03 A09 [要求1]--对列进行统计求和 A01 A02 A03 A09 TOTAL [要求2]--对行进行统计求和 ...

  2. Filter功能

    在HttpServletRequest到达 Servlet 之前,拦截客户的HttpServletRequest .根据需要检查HttpServletRequest,也可以修改HttpServletR ...

  3. apache httpd.conf

    Apache的主配置文件:/etc/httpd/conf/httpd.conf 默认站点主目录:/var/www/html/ Apache服务器的配置信息全部存储在主配置文件/etc/httpd/co ...

  4. Python-百度经纬度转高德经纬度

    import math def bdToGaoDe(lon,lat): """ 百度坐标转高德坐标 :param lon: :param lat: :return: &q ...

  5. 028_rync和inotify实现实时备份

    一.服务节点安装inotify-tools. 确保系统后以下输出=> [root@xxxx]# ll /proc/sys/fs/inotify/ total 0 -rw-r--r-- 1 roo ...

  6. art 校准时设备端操作

    (1)准备所需文件art.ko  和 nart.out (2)配置设备的IP地址(例如:192.168.2.122),使之能与本地PC通信 (3)上传文件到设备 cd /tmp tftp -g -r ...

  7. 详解Android属性动画

    前面我们讲到的属性动画都是使用代码的定义方式:Android属性动画之ValueAnimator和Android属性动画之ObjectAnimator和AnimatorSet,下面我们再来看看使用XM ...

  8. Oracle 数据库逻辑结构

    注:本文来源于 <腾科OCP培训课堂>.非准许商业活动. Oracle 数据库逻辑结构 一.存储关系 Oracle 数据库逻辑上是由一个或多个表空间组成的,表空间物理上是由一个或多个数据 ...

  9. 使用@property - 廖雪峰的官方网站

    使用@property 阅读: 20616 在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改: s = Student() s.score = 9 ...

  10. jmeter在返回的json串中提取需要的值

    接口测试时我们需要对某条信息进行修改,如我们先创建了一篇文章,然后进行修改操作 我们就需要找到该文章的唯一标志,如id 示例:我们要将下图返回的json 中id进行提取 注:可输入$.加需要的key即 ...