思路:

最大流模板。

 #include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
inline int getint() {
char ch;
while(!isdigit(ch=getchar()));
int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,M=,inf=0x7fffffff;
struct Edge {
int from,to,remain;
};
Edge e[M<<];
std::vector<int> g[N];
int sz=;
inline void add_edge(const int u,const int v,const int w) {
e[sz]=(Edge){u,v,w};
g[u].push_back(sz);
sz++;
}
int s,t;
int a[N],p[N];
inline int Augment() {
memset(a,,sizeof a);
a[s]=inf;
std::queue<int> q;
q.push(s);
while(!q.empty()&&!a[t]) {
int x=q.front();
q.pop();
for(unsigned i=;i<g[x].size();i++) {
Edge &y=e[g[x][i]];
if(!a[y.to]&&y.remain) {
p[y.to]=g[x][i];
a[y.to]=std::min(a[x],y.remain);
q.push(y.to);
}
}
}
return a[t];
}
inline int EdmondsKarp() {
int maxflow=;
while(int flow=Augment()) {
for(int i=t;i!=s;i=e[p[i]].from) {
e[p[i]].remain-=flow;
e[p[i]^].remain+=flow;
}
maxflow+=flow;
}
return maxflow;
}
int main() {
int n=getint(),m=getint();
s=,t=n;
while(m--) {
int u=getint(),v=getint(),w=getint();
add_edge(u,v,w);
add_edge(v,u,);
}
printf("%d\n",EdmondsKarp());
return ;
}

[HihoCoder1369]网络流一·Ford-Fulkerson算法的更多相关文章

  1. ACM/ICPC 之 网络流入门-Ford Fulkerson与SAP算法(POJ1149-POJ1273)

    第一题:按顾客访问猪圈的顺序依次构图(顾客为结点),汇点->第一个顾客->第二个顾客->...->汇点 //第一道网络流 //Ford-Fulkerson //Time:47M ...

  2. 网络流-最大流问题 ISAP 算法解释(转自Renfei Song's Blog)

    网络流-最大流问题 ISAP 算法解释 August 7, 2013 / 编程指南 ISAP 是图论求最大流的算法之一,它很好的平衡了运行时间和程序复杂度之间的关系,因此非常常用. 约定 我们使用邻接 ...

  3. HDU3549 Flow Problem(网络流增广路算法)

    题目链接. 分析: 网络流增广路算法模板题.http://www.cnblogs.com/tanhehe/p/3234248.html AC代码: #include <iostream> ...

  4. POJ 2455 网络流 基础题 二分+网络流 dicnic 以及 sap算法

    Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8189   Accepted: ...

  5. 网络流入门--最大流算法Dicnic 算法

    感谢WHD的大力支持 最早知道网络流的内容便是最大流问题,最大流问题很好理解: 解释一定要通俗! 如右图所示,有一个管道系统,节点{1,2,3,4},有向管道{A,B,C,D,E},即有向图一张.  ...

  6. 网络流的$\mathfrak{Dinic}$算法

    网络流想必大家都知道,在这不过多赘述.网络流中有一类问题是让你求最大流,关于这个问题,许多计算机学家给出了许多不同的算法,在这里--正如标题所说--我们只介绍其中的一种--\(\tt{Dinic}\) ...

  7. 网络流之最大流算法(EK算法和Dinc算法)

    最大流 网络流的定义: 在一个网络(有流量)中有两个特殊的点,一个是网络的源点(s),流量只出不进,一个是网络的汇点(t),流量只进不出. 最大流:就是求s-->t的最大流量 假设 u,v 两个 ...

  8. (通俗易懂小白入门)网络流最大流——EK算法

    网络流 网络流是模仿水流解决生活中类似问题的一种方法策略,来看这么一个问题,有一个自来水厂S,它要向目标T提供水量,从S出发有不确定数量和方向的水管,它可能直接到达T或者经过更多的节点的中转,目前确定 ...

  9. 网络流(2)——用Ford-Fullkerson算法寻找最大流

    寻找最大流 在大规模战争中,后勤补给是重中之重,为了尽最大可能满足前线的物资消耗,后勤部队必然要充分利用每条运输网,这正好可以用最大流模型解决.如何寻找一个复杂网络上的最大流呢? 直觉上的方案 一种直 ...

随机推荐

  1. 命令行command line 使用 http proxy的设置方法 Setting Up HTTP Proxy in Terminal

    Step 1: Install Shadowsocks Client Shadowsocks is an open-source proxy project to help people visit ...

  2. html5学习第一天

    1.语义标签解决方案 <video></video> 属性: controls 显示控制栏 autoplay 自动播放 loop  设置循环播放 多媒体标签在网页中的兼容效果方 ...

  3. python 中is和== 的理解

    Python中的对象包含三要素:id.type.value其中id用来唯一标识一个对象,type标识对象的类型,value是对象的值is判断的是a对象是否就是b对象,是通过id来判断的==判断的是a对 ...

  4. 集成Struts2+Spring+Hibernate_两种方案

    集成Struts2+Spring+Hibernate 第一种方案:让Spring创建Struts2的Action,不让Spring完全管理Struts2的Action      Struts2 Act ...

  5. Initialization of bean failed; nested exception is java.lang.IllegalArgumentException: error at ::0 inconsistent binding

    1.发生原因  springAOP 里面绑定参数出现错误  核对绑定参数的名称    核对 springAOP的版本 2.aop切面表达式写的有误

  6. Sandcastle方法生成c#.net帮助类帮助文档chm

    Sandcastle方法生成c#.net帮助类帮助文档即chm后缀的文档,其实是通过C#文档注释生成的XML文件来生成帮助文档的.因此,第一步就是生成XML文档, 步骤1生成XML文档 1.打开VS- ...

  7. 选择一个 HTTP 状态码不再是一件难事 – Racksburg《转载》

    本文转载自:众成翻译 译者:十年踪迹 链接:http://www.zcfy.cc/article/904 原文:http://racksburg.com/choosing-an-http-status ...

  8. 自己的vim配置

    nmap <F11> :source ~/.vimrc<CR> "n 普通模式 F11映射为 :source ~/.vimrc winpos 5 5 "wi ...

  9. jquery----data使用

    - .data() - .data("key", value) 保存值,value可以是字符串,也可以是数组,也可以是jquery对象- .data("key" ...

  10. 遍历DOM树

    遍历DOM在jQuery中是非常重要的技术. 遍历DOM之前,需要对DOM有清晰的认识,了解文档节点.元素节点.属性节点.文本节点等相关概念.不清楚可以温习下<JavaScript教程.DOM树 ...