思路:

最大流模板。

 #include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
inline int getint() {
char ch;
while(!isdigit(ch=getchar()));
int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,M=,inf=0x7fffffff;
struct Edge {
int from,to,remain;
};
Edge e[M<<];
std::vector<int> g[N];
int sz=;
inline void add_edge(const int u,const int v,const int w) {
e[sz]=(Edge){u,v,w};
g[u].push_back(sz);
sz++;
}
int s,t;
int a[N],p[N];
inline int Augment() {
memset(a,,sizeof a);
a[s]=inf;
std::queue<int> q;
q.push(s);
while(!q.empty()&&!a[t]) {
int x=q.front();
q.pop();
for(unsigned i=;i<g[x].size();i++) {
Edge &y=e[g[x][i]];
if(!a[y.to]&&y.remain) {
p[y.to]=g[x][i];
a[y.to]=std::min(a[x],y.remain);
q.push(y.to);
}
}
}
return a[t];
}
inline int EdmondsKarp() {
int maxflow=;
while(int flow=Augment()) {
for(int i=t;i!=s;i=e[p[i]].from) {
e[p[i]].remain-=flow;
e[p[i]^].remain+=flow;
}
maxflow+=flow;
}
return maxflow;
}
int main() {
int n=getint(),m=getint();
s=,t=n;
while(m--) {
int u=getint(),v=getint(),w=getint();
add_edge(u,v,w);
add_edge(v,u,);
}
printf("%d\n",EdmondsKarp());
return ;
}

[HihoCoder1369]网络流一·Ford-Fulkerson算法的更多相关文章

  1. ACM/ICPC 之 网络流入门-Ford Fulkerson与SAP算法(POJ1149-POJ1273)

    第一题:按顾客访问猪圈的顺序依次构图(顾客为结点),汇点->第一个顾客->第二个顾客->...->汇点 //第一道网络流 //Ford-Fulkerson //Time:47M ...

  2. 网络流-最大流问题 ISAP 算法解释(转自Renfei Song's Blog)

    网络流-最大流问题 ISAP 算法解释 August 7, 2013 / 编程指南 ISAP 是图论求最大流的算法之一,它很好的平衡了运行时间和程序复杂度之间的关系,因此非常常用. 约定 我们使用邻接 ...

  3. HDU3549 Flow Problem(网络流增广路算法)

    题目链接. 分析: 网络流增广路算法模板题.http://www.cnblogs.com/tanhehe/p/3234248.html AC代码: #include <iostream> ...

  4. POJ 2455 网络流 基础题 二分+网络流 dicnic 以及 sap算法

    Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8189   Accepted: ...

  5. 网络流入门--最大流算法Dicnic 算法

    感谢WHD的大力支持 最早知道网络流的内容便是最大流问题,最大流问题很好理解: 解释一定要通俗! 如右图所示,有一个管道系统,节点{1,2,3,4},有向管道{A,B,C,D,E},即有向图一张.  ...

  6. 网络流的$\mathfrak{Dinic}$算法

    网络流想必大家都知道,在这不过多赘述.网络流中有一类问题是让你求最大流,关于这个问题,许多计算机学家给出了许多不同的算法,在这里--正如标题所说--我们只介绍其中的一种--\(\tt{Dinic}\) ...

  7. 网络流之最大流算法(EK算法和Dinc算法)

    最大流 网络流的定义: 在一个网络(有流量)中有两个特殊的点,一个是网络的源点(s),流量只出不进,一个是网络的汇点(t),流量只进不出. 最大流:就是求s-->t的最大流量 假设 u,v 两个 ...

  8. (通俗易懂小白入门)网络流最大流——EK算法

    网络流 网络流是模仿水流解决生活中类似问题的一种方法策略,来看这么一个问题,有一个自来水厂S,它要向目标T提供水量,从S出发有不确定数量和方向的水管,它可能直接到达T或者经过更多的节点的中转,目前确定 ...

  9. 网络流(2)——用Ford-Fullkerson算法寻找最大流

    寻找最大流 在大规模战争中,后勤补给是重中之重,为了尽最大可能满足前线的物资消耗,后勤部队必然要充分利用每条运输网,这正好可以用最大流模型解决.如何寻找一个复杂网络上的最大流呢? 直觉上的方案 一种直 ...

随机推荐

  1. 关于MySQL 8.0的几个重点【转】

    转自 关于MySQL .0的几个重点,都在这里 https://mp.weixin.qq.com/s/QUpk9uuS2JTli1GT6HuORA 一.关于MySQL Server的改进 1.1 re ...

  2. Struts2的类型转换器

    Struts2的类型转换器 如何实现Struts2的类型转换器? * 继承StrutsTypeConverter * 覆盖convertFromString和convertToString 注册类型转 ...

  3. sqlserver2008r2通过发布和订阅的方式进行数据库同步

    发布服务器:192.168.8.16 订阅服务器:192.168.8.92 发布服务器配置: 选择需要发布的数据库,这里是Attendace_new 订阅服务器配置: 在订阅服务器上新建一个数据库:d ...

  4. jmeter之ip欺骗

    说明:我看有的博客说官方文档是在jmeter2.5以上的版本有此功能的实现~ 我的是2.13版本,也可以实现 . 准备工作: 使用IP欺骗功能必须得本地有多个可用IP,通常普通的PC机只有一个物理网卡 ...

  5. 在Mac上安装GTK(go语言GUI)

    1.在终端输入:xcode-select --install 安装command line工具, 如果安装了Xcode, 就直接跳过该步骤 2. 在终端输入:ruby -e "$(curl ...

  6. bootgrid 刷新保持当前排序

    1. 前言 主要是利用了HTHNL5的localStorage技术和用ajax传输一个数组到后台并进行判断.这篇文章是解决一个小需求而来的,主要是用来记录. 2. 代码 JavaScript: var ...

  7. NodeJs>------->>第三章:Node.js基础知识

    第三章:Node.js基础知识 一:Node.js中的控制台 1:console.log.console.info  方法 console.log(" node app1.js 1> ...

  8. hdu2476

    /* dp[l][r]表示将任意串的[l,r]刷成s2样子的最小代价 ans[i]表示将s1的前i位刷成s2的代价 按照区间dp的常用做法,dp[l][r]的状态由dp[l][k],dp[k+1][r ...

  9. python+selenium五:多窗口切换与获取句柄

    from selenium import webdriverfrom selenium.webdriver.common.by import Byimport time driver = webdri ...

  10. appium自动化测试之元素定位

    方法一 使用SDK中附带的uiautomatorviewer来定位 在SDK安装目录下的tools下有个uiautomatorviewer.bat批处理文件点击运行 运行后(注意appium desk ...