https://yq.aliyun.com/articles/558181

Mask R-CNN与Faster R-CNN相似,Faster R-CNN是two-stage的,其中第一个stage是RPN。添加一个预测分割mask的并行分支——这是一个FCN。

ROIlign Layer而不是ROIPool。这就不会像ROIPool那样将(x / spatial_scale)分数舍入为整数,相反,它执行双线性插值来找出那些浮点值处的像素。

它的主干是ResNet-FPN

例如:想象一下,ROI的高度和宽度分别为54,167。空间尺度基本上是图像大学/ FMap大学(H / h),在这种情况下它也被称为步幅(stride)。通常224/14 = 16(H = 224,h = 14)。

◦ ROIPool: 54/16, 167/16 = 3,10

◦ ROIAlign: 54/16, 167/16 = 3.375, 10.4375

◦ 现在我们可以使用双线性插值来进行上采样。

keras实现:

https://github.com/matterport/Mask_RCNN/

http://blog.leanote.com/post/afanti.deng@gmail.com/b5f4f526490b   ROI Align\

ROI Align在VOC2007数据集上的提升效果并不如在COCO上明显。经过分析,造成这种区别的原因是COCO上小目标的数量更多,而小目标受misalignment问题的影响更大(比如,同样是0.5个像素点的偏差,对于较大的目标而言显得微不足道,但是对于小目标,误差的影响就要高很多)。

https://blog.csdn.net/yiyouxian/article/details/79221830      caffe实现ROI Align

https://blog.csdn.net/u013010889/article/details/79232740   c++

https://ptorch.com/news/103.html  pytorch

---->

https://github.com/ppwwyyxx/tensorpack/blob/6d5ba6a970710eaaa14b89d24aace179eb8ee1af/examples/FasterRCNN/model.py#L301

中的

301行def crop_and_resize(image, boxes, box_ind, crop_size):

357行def roi_align(featuremap, boxes, output_shape):

RoIAlign是crop_and_resize使用非标准化(x1, y1, x2, y2)框作为输入(而crop_and_resize使用规范化(y1, x1, y2, x2)为输入)。想知道RoIAligncrop_and_resize差异的细节可以查看tensorpack

ROI-Align解决方案的更多相关文章

  1. ROI Pool和ROI Align

    这里说一下ROI Pool和ROI Align的区别: 一.ROI Pool层: 参考faster rcnn中的ROI Pool层,功能是将不同size的ROI区域映射到固定大小的feature ma ...

  2. ROI align解释

    转自:blog.leanote.com/post/afanti.deng@gmail.com/b5f4f526490b ROI Align 是在Mask-RCNN这篇论文里提出的一种区域特征聚集方式, ...

  3. 目标检测中roi的有关操作

    1.roi pooling 将从rpn中得到的不同Proposal大小变为fixed_length output, 也就是将roi区域的卷积特征拆分成为H*W个网格,对每个网格进行maxpooling ...

  4. 论文阅读笔记四十五:Region Proposal by Guided Anchoring(CVPR2019)

    论文原址:https://arxiv.org/abs/1901.03278 github:code will be available 摘要 区域anchor是现阶段目标检测方法的重要基石.大多数好的 ...

  5. [论文理解] Acquisition of Localization Confidence for Accurate Object Detection

    Acquisition of Localization Confidence for Accurate Object Detection Intro 目标检测领域的问题有很多,本文的作者捕捉到了这样一 ...

  6. CVPR2021| 行人搜索中的第一个anchor-free模型:AlignPS

    论文地址:https://arxiv.org/abs/2103.11617 代码地址:https://github.com/daodaofr/AlignPS 前言: 本文针对anchor-free模型 ...

  7. CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)

    CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...

  8. CVPR2020论文解读:3D Object Detection三维目标检测

    CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Det ...

  9. 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

随机推荐

  1. python中字典内置方法

  2. Uva 11520 - Fill the Square 贪心 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  3. flask项目结构(二)创建flask,同步docker

    简介: 建立flask容易,那么部署就比较麻烦了,配这个,配那个,更新………… 所以我从构建,就考虑部署的问题,使用docker部署. 程序都打包进docker,本博客有相关文章. pycharn直接 ...

  4. Mybatis的二级缓存注意点

    --声明:一下内容都不一定是正确的,只是自己测试的结果,请自己的动手操作得出自己的结论 1.开启Mybatis的二级缓存,不仅要在SqlMapConfig.xml中进行开启总开关,还要在对应的XXXM ...

  5. gensim做主题模型

    作为Python的一个库,gensim给了文本主题模型足够的方便,像他自己的介绍一样,topic modelling for humans 具体的tutorial可以参看他的官方网页,当然是全英文的, ...

  6. form 表单模板

    <div class="modal-dialog modal-lg"> //大布局modal-lg <div class="modal-content& ...

  7. 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现(二)[超详细教程] ubuntu16.04版本

    本节对应谷歌开源Tensorflow Object Detection API物体识别系统 Quick Start步骤(一): Quick Start: Jupyter notebook for of ...

  8. HihoCoder - 1483 区间最值

    给定n个数A1...An,小Ho想了解AL..AR中有多少对元素值相同.小Ho把这个数目定义为区间[L,R]的价值,用v[L,R]表示. 例如1 1 1 2 2这五个数所组成的区间的价值为4. 现在小 ...

  9. Gym - 100989M(dp)

    George met AbdelKader in the corridor of the CS department busy trying to fix a group of incorrect e ...

  10. <Parquet><Physical Properties><Best practice><With impala>

    Parquet Parquet is a columnar storage format for Hadoop. Parquet is designed to make the advantages ...