卷积运算,两个输入张量(输入数据和卷积核)进行卷积,输出代表来自每个输入的信息张量。tf.nn.conv2d完成卷积运算。卷积核(kernel),权值、滤波器、卷积矩阵或模版,filter。权值训练习得。卷积核(filter参数)权值数量决定需要学习卷积核数量。通道,计算机器视觉,描述输出向量。RGB图像,3个代表秩1张量[red,green,blue]通道。输出与input_batch同秩张量,与卷积核维数相同。两个张量卷积生成特征图(feature map)。特征图为输出添加新层代表张量卷积。访问输入批数据和特征图元素用相同索引,可了解输入与kernel卷积运算值变化。层,输出新维度。

计算机视觉卷积价值,修改卷积核strides(跨度)参数实现输入降维。strides参数使卷积核无需遍历每个输入元素,跳过部分图像像素。kernel在input_batch滑动,跨过部分元素,每次移动以input_batch一个元素为中心。位置重叠值相乘,乘积相加,得卷积结果。逐点相乘,整合两个输入。设置跨度,调整输入张量维数。降维减少运算量,避免重叠感受域。strides参数格式与输入向量相同(image_batch_size_stride、image_height_stride、image_width_stride、image_channels_stride)。

边界填充,卷积核与图像尺寸不匹配,填充图像缺失区域。TensorFlow用0填充。padding参数控制conv2d零填充数或错误状态。SAME:卷积输出输入尺寸相同,不考虑滤波器尺寸,缺失像素填充0,卷积核扫像素数大于图像实际像素数。VALID:考虑滤波器尺寸。尽量不越过图像边界,也可能边界被填充。

data_format修改数据格式。NHWC指定输入输出数据格式,[batch_size(批数据张量数)、in_height(批数据张量高度)、in_width(批数据张量宽度)、in_channels(批数据张量通道数)]。NCHW指定输入输出数据格式,[batch_size、in_channels、in_height、in_width]。

TensorFlow滤波器参数指定输入卷积运算卷积核。滤波器使用特定模式突出图像中感兴趣特征。图像与边缘检测卷积核的卷积输出是所有检测边缘区域。tf.minimum和tf.nn.relu使卷积值保持在RGB颜色值合法范围[0,255]内。卷积核初值随机设定,训练迭代,值由CNN学习层自动调整,训练一迭代,接收图像,与卷积核卷积,预测结果与图像真实标签是否一致,调整卷积核。

    import tensorflow as tf
input_batch = tf.constant([
[#第1个输入
[[0.0],[1.0]],
[[2.0],[3.0]]
],
[#第2个输入
[[2.0],[4.0]],
[[6.0],[8.0]]
]
])
print input_batch
kernel = tf.constant([
[
[[1.0, 2.0]]
]
])
print kernel
conv2d = tf.nn.conv2d(input_batch, kernel, strides=[1, 1, 1, 1], padding='SAME')#conv2d卷积运算
print conv2d
sess = tf.Session()
print sess.run(conv2d)
lower_right_image_pixel = sess.run(input_batch)[0][1][1]
lower_right_kernel_pixel = sess.run(conv2d)[0][1][1]
print lower_right_image_pixel, lower_right_kernel_pixel
input_batch2 = tf.constant([
[#第1个输入(6x6x1)
[[0.0],[1.0],[2.0],[3.0],[4.0],[5.0]],
[[0.1],[1.1],[2.1],[3.1],[4.1],[5.1]],
[[0.2],[1.2],[2.2],[3.2],[4.2],[5.2]],
[[0.3],[1.3],[2.3],[3.3],[4.3],[5.3]],
[[0.4],[1.4],[2.4],[3.4],[4.4],[5.4]],
[[0.5],[1.5],[2.5],[3.5],[4.5],[5.5]]
]
])
print input_batch2
kernel2 = tf.constant([#卷积核(3x3x1)
[[[0.0]], [[0.5]], [[0.0]]],
[[[0.0]], [[1.0]], [[0.0]]],
[[[0.0]], [[0.5]], [[0.0]]]
])
print kernel2
conv2d2 = tf.nn.conv2d(input_batch2, kernel2, strides=[1, 3, 3, 1], padding='SAME')
print conv2d2
print sess.run(conv2d2)
lower_right_image_pixel2 = sess.run(input_batch2)[0][1][1]
lower_right_kernel_pixel2 = sess.run(conv2d2)[0][1][1]
print lower_right_image_pixel2, lower_right_kernel_pixel2
input_batch3 = tf.constant([
[#第1个输入(6x6x1)
[[0.0,1.0,2.0],[1.0,2.0,3.0]],
[[0.1,1.1,2.1],[1.1,2.1,3.1]],
[[0.2,1.2,2.2],[1.2,2.2,3.2]],
[[0.3,1.3,2.3],[1.3,2.3,3.3]],
[[0.4,1.4,2.4],[1.4,2.4,3.4]],
[[0.5,1.5,2.5],[1.5,2.5,3.5]]
]
])
print input_batch3
kernel3 = tf.constant([
[
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]],
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]],
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]]
],
[
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]],
[[8., 0., 0.],[0., 8., 0.],[0., 0., 8.]],
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]]
],
[
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]],
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]],
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]]
]
])
print kernel3
conv2d3 = tf.nn.conv2d(input_batch3, kernel3, strides=[1, 1, 1, 1], padding='SAME')
print conv2d3
activation_map3 = sess.run(tf.minimum(tf.nn.relu(conv2d3), 255))
print activation_map3
lower_right_image_pixel3 = sess.run(input_batch3)[0][1][1]
lower_right_kernel_pixel3 = sess.run(conv2d3)[0][1][1]
print lower_right_image_pixel3, lower_right_kernel_pixel3
kernel4 = tf.constant([
[
[[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]],
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]],
[[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]]
],
[
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]],
[[5., 0., 0.],[0., 5., 0.],[0., 0., 5.]],
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]]
],
[
[[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]],
[[-1., 0., 0.],[0., -1., 0.],[0., 0., -1.]],
[[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]]
]
])
print kernel4
conv2d4 = tf.nn.conv2d(input_batch3, kernel4, strides=[1, 1, 1, 1], padding='SAME')
print conv2d4
activation_map4 = sess.run(tf.minimum(tf.nn.relu(conv2d4), 255))
print activation_map4
lower_right_image_pixel4 = sess.run(input_batch3)[0][1][1]
lower_right_kernel_pixel4 = sess.run(conv2d4)[0][1][1]
print lower_right_image_pixel4, lower_right_kernel_pixel4

参考资料:
《面向机器智能的TensorFlow实践》

欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz

学习笔记TF013:卷积、跨度、边界填充、卷积核的更多相关文章

  1. CNN学习笔记:卷积运算

    CNN学习笔记:卷积运算 边缘检测 卷积 卷积是一种有效提取图片特征的方法.一般用一个正方形卷积核,遍历图片上的每一个像素点.图片与卷积核重合区域内相对应的每一个像素值乘卷积核 .内相对应点的权重,然 ...

  2. CNN学习笔记:卷积神经网络

    CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...

  3. 深度学习笔记 (一) 卷积神经网络基础 (Foundation of Convolutional Neural Networks)

    一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“ ...

  4. 学习笔记TF014:卷积层、激活函数、池化层、归一化层、高级层

    CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有 ...

  5. 学习笔记TF027:卷积神经网络

    卷积神经网络(Convolutional Neural Network,CNN),可以解决图像识别.时间序列信息问题.深度学习之前,借助SIFT.HoG等算法提取特征,集合SVM等机器学习算法识别图像 ...

  6. 【学习笔记】卷积神经网络 (CNN )

    前言 对于卷积神经网络(cnn)这一章不打算做数学方面深入了解,所以只是大致熟悉了一下原理和流程,了解了一些基本概念,所以只是做出了一些总结性的笔记. 感谢B站的视频 https://www.bili ...

  7. 学习笔记TF052:卷积网络,神经网络发展,AlexNet的TensorFlow实现

    卷积神经网络(convolutional neural network,CNN),权值共享(weight sharing)网络结构降低模型复杂度,减少权值数量,是语音分析.图像识别热点.无须人工特征提 ...

  8. 学习笔记TF012:卷积网络简述

    ImageNet http://www.image-net.org ,图像标注信息数据库.每年举办大规模视觉识别挑战赛(ILSVRC).基于ImageNet数据库构建完成目标自动检测分类任务系统.20 ...

  9. Laravel5.1学习笔记18 数据库4 数据填充

    简介 编写数据填充类 使用模型工厂类 调用额外填充类 执行填充 #简介 Laravel includes a simple method of seeding your database with t ...

随机推荐

  1. Android 音视频深入 四 录视频MP4(附源码下载)

    本篇项目地址,名字是<录音视频(有的播放器不能放,而且没有时长显示)>,求star https://github.com/979451341/Audio-and-video-learnin ...

  2. 前端vue项目-关于下载文件pdf/excel(三)

    最近在做一些需求,需要下载一些文件信息,最频繁的就是下载excel文件到本地了 看过了很多方法,做个整理吧哈哈哈哈 参考的文章链接: https://www.cnblogs.com/jiangweic ...

  3. TTL特殊门电路

    集电极开路(OC)门:主要作用实现线与功能:用做驱动器:实现电平转换 三态输出(TS)门:应用于计算机总线结构,通过分时控制三态门始轮端使得cpu与不同的外设通信:应用于双向传输,实现门电路与总线实现 ...

  4. js onclick函数中传字符串参数的问题

    规则: 外变是“”,里面就是‘’外边是‘’,里边就是“”   示例: var a="111"; var html="<a onclick='selecthoods( ...

  5. jQuery操错题积累

    1: 解析: onBlur:焦点移除事件. onfocus:定义和用法 onfocus 事件在对象获得焦点时发生 onchange:定义和用法 onchange 事件会在域的内容改变时发生 nclic ...

  6. Maven 加载ojdbc14.jar报错,解决方法

    因为oracle的ojdbc.jar是收费的,所以maven的中央仓库中没有这个资源,只能通过配置本地库才能加载到项目中去. 首先下载 ojdbc14  https://pan.baidu.com/s ...

  7. Linux系统管理常用命令用法总结(1)

    1.usermod可用来修改用户帐号的各项设定. usermod [-LU][-c <备注>][-d <登入目录>][-e <有效期限>][-f <缓冲天数& ...

  8. spring boot 发邮件

    报错:  Mail server connection failed; nested exception is javax.mail.MessagingException: Could not con ...

  9. Centos7 LNMP 一键安装

    首页: https://lnmp.org/ 安装包生成页: https://lnmp.org/auto.html

  10. django面试七

    Dango model 几种继承形式抽共享继承不能等实例化,抽象方法必须在子类中实现,Django不对其建立对应的表.class Animal(models.Model): name = models ...