洛谷 P3521 ROT-Tree Rotations [POI2011] 线段树
正解:线段树合并
解题报告:
今天学了下线段树合并,,,感觉线段树相关的应用什么的还是挺有趣的,今天晚上可能会整理一下$QAQ?$
然后直接看这道题
现在考虑对一个节点$nw$,现在已经分别处理出它的$ls$和$rs$的最少逆序对个数了,然后现在考虑要不要交换呢$QAQ$
显然不管$nw$节点的左右子树内部是怎么排列的,他们整体对外部的贡献是不变的,所以我们只要考虑内部的逆序对个数怎么样尽量小$QAQ$
这里就可以考虑对每个节点分别开一个权值线段树,然后逆序对的话可以直接在merge的时候做,树状数组都能有的功能线段树肯定也能有昂$QAQ$
等下放代码$QAQ!$
对了还要说个,就是,它的读入很鬼畜,,,又麻油翻译,,,大概就是说,它是给的一个递归形式的输入,如果是$0$,说明有左右节点,否则为叶子节点
然后这个可以用$dfs$递归读入,而且刚刚好在读入的时候顺便一起做完了$QAQ$
最后夸一下,这题,特别好,它好就好在,,,我我我$RE\&MLE$了七十多次,,,开大点儿就$MLE$小了又会$RE$,,,调了半天发现是我代码中数据类型$int$和$long\ long$的定义有问题$QAQ$
这题动画,唯一要用ll的就是逆序对的个数,其他都不要开昂$QAQ$
然后还有就是,如果有这么一句话:$a=solve();$其中a是个$int$,函数的定义写的返回类型是$ll$,这样写可能就会有一些莫名其妙的后果,所以一定要注意对应$QAQ$!如果$a$是个$int$在定义$solve$的时候一定记得定义成$int$!
没了$QAQ$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define rg register
#define gc getchar()
#define ll long long int n,nod_cnt;
ll as,ret1,ret2;
struct sgtr{int ls,rs,sz;}tr[]; il int read()
{
rg char ch=gc;rg int x=;rg bool y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
int buildnw(rg int l,rg int r,rg int dat)
{
tr[++nod_cnt].sz=;if(l==r)return nod_cnt;
rg int mid=(l+r)>>,nw=nod_cnt;if(dat<=mid)tr[nod_cnt].ls=buildnw(l,mid,dat);else tr[nod_cnt].rs=buildnw(mid+,r,dat);return nw;
}
int merge(rg int l,rg int r,rg int nw1,rg int nw2)
{
if(!nw1 || !nw2)return nw1+nw2;
if(l==r)return tr[nw1].sz=tr[nw1].sz+tr[nw2].sz,nw1;
rg int mid=(l+r)>>;
ret1+=1ll*tr[tr[nw1].rs].sz*tr[tr[nw2].ls].sz;ret2+=1ll*tr[tr[nw1].ls].sz*tr[tr[nw2].rs].sz;
tr[nw1].ls=merge(l,mid,tr[nw1].ls,tr[nw2].ls);tr[nw1].rs=merge(mid+,r,tr[nw1].rs,tr[nw2].rs);tr[nw1].sz=tr[nw1].sz+tr[nw2].sz;return nw1;
}
int rd()
{
rg int tmp=read();
if(tmp)return buildnw(,n,tmp);
rg int nw=merge(,n,rd(),rd());as+=min(ret1,ret2);ret1=ret2=;return nw;
} int main()
{
n=read();rd();printf("%lld\n",as);
return ;
}
放下代码QAQ
洛谷 P3521 ROT-Tree Rotations [POI2011] 线段树的更多相关文章
- 「POI2011 R2 Day2」Tree Rotations【线段树合并】
题目链接 [BZOJ] [洛谷] [LOJ] 题解 由于是前序遍历,那么讨论一棵树上的逆序对的情况. 两个节点都在左子树上 两个节点都在右子树上 两个节点分别在不同的子树上. 前两种情况其实也可以归结 ...
- [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...
- BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...
- 【BZOJ2212】[POI2011]Tree Rotations (线段树合并)
题解: 傻逼题 启发式合并线段树里面查$nlog^2$ 线段树合并顺便维护一下$nlogn$ 注意是叶子为n 总结点2n 代码: #include <bits/stdc++.h> usin ...
- bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...
- BZOJ2212 [Poi2011]Tree Rotations 【线段树合并】
题目链接 BZOJ2212 题解 一棵子树内的顺序不影响其与其它子树合并时的答案,这一点与归并排序的思想非常相似 所以我们只需单独处理每个节点的两棵子树所产生的最少逆序对即可 只有两种情况,要么正序要 ...
- 【洛谷3822】[NOI2017] 整数(线段树压位)
题目: 洛谷 3822 分析: 直接按题意模拟,完了. 将每次加 / 减拆成不超过 \(32\) 个对单独一位的加 / 减. 考虑给一个二进制位(下称「当前位」)加 \(1\) 时,如果这一位本来就是 ...
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
- 洛谷P3434 [POI2006]KRA-The Disks(线段树)
洛谷题目传送门 \(O(n)\)的正解算法对我这个小蒟蒻真的还有点思维难度.洛谷题解里都讲得很好. 考试的时候一看到300000就直接去想各种带log的做法了,反正不怕T...... 我永远只会有最直 ...
随机推荐
- File 类的 getCanonicalFile( ) 和 getAbsoluteFile( ) 区别
一.打开java.io.File源码,看下两个方法的区别 getAbsoluteFile public File getAbsoluteFile() { String absPath = getAbs ...
- 【原】关于AdaBoost的一些再思考
一.Decision Stumps: Decision Stumps称为单层分类器,主要用作Ensemble Method的组件(弱分类器).一般只进行一次判定,可以包含两个或者多个叶结点.对于离散数 ...
- Android调用相机拍摄照片并显示到 ImageView控件中
在前面的一篇文章中曾介绍过简单的开启相机照相功能,详见 Android简单调用相机Camera功能,实现打开照相功能 ,这一次就会将前面拍摄的照片显示到ImageView中,形成一个完整的效果 看实例 ...
- 教程:SpagoBI开源商业智能之XML Template 图表模板
SpagoBI offers a variety of widgets' examples realized with the Highcharts library, that can be divi ...
- [原创]找不到mswinsck.ocx的解决办法
mswinsck.ocx,是在运行程序或者游戏时,系统弹出错误提示“ 找不到mswinsck.ocx”,或者“ 没有找到 mswinsck.ocx”时,说明您系统中缺失这个OCX文件或者该OCX文件没 ...
- Make ProgressBar Vertical
Create a drawable in your Drawable folder called vertical_progress_bar.xml: <?xml version="1 ...
- 前端分页插件pagination
摘要: 最近在开发项目中又用到了前端分页,以前也做过,为了方便以后使用所以将他封装成第三方插件,不依赖任何库.网上已经有很多插件,问什么还要自己造轮子? 自己写的扩展性高 不依赖任何库 作为一次技术沉 ...
- css3整理--Animation
animation语法: 1.动画的定义 @keyframes IDENT { from { Properties:Properties value; } Percentage { Propertie ...
- [原]Jenkins(十一)---jenkins使用管理员admin创建用户和分配权限
/** * lihaibo * 文章内容都是根据自己工作情况实践得出. * 版权声明:本博客欢迎转发,但请保留原作者信息! http://www.cnblogs.com/horizonli/p/533 ...
- J - S-Nim
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as ...