作者:刘旭晖 Raymond 转载请注明出处

Email:colorant at 163.com

BLOG:http://blog.csdn.net/colorant/

Memcached和Redis作为两种Inmemory的key-value数据库,在设计和思想方面有着很多共通的地方,功能和应用方面在很多场合下(作为分布式缓存服务器使用等) 也很相似,在这里把两者放在一起做一下对比的介绍

基本架构和思想

首先简单介绍一下两者的架构和设计思路

Memcached

Memcached采用客户端-服务器的架构,客户端和服务器端的通讯使用自定义的协议标准,只要满足协议格式要求,客户端Library可以用任何语言实现。

从用户的角度来说,服务器维护了一个键-值关系的数据表,服务器之间相互独立,互相之间不共享数据也不做任何通讯操作。客户端需要知道所有的服务器,并自行负责管理数据在各个服务器间的分配。

在服务器端,内部的数据存储,使用基于Slab的内存管理方式,有利于减少内存碎片和频繁分配销毁内存所带来的开销。各个Slab按需动态分配一个page的内存(和4Kpage的概念不同,这里默认page为1M),page内部按照不同slab class的尺寸再划分为内存chunk供服务器存储KV键值对使用

Memcached的基本应用模型如下图所示

Redis

Redis的基本应用模式和上图memcached的基本相似,不难发现网上到处都是关于redis是否可以完全替代memcached使用的问题

Redis内部的数据结构最终也会落实到key-Value对应的形式,不过从暴露给用户的数据结构来看,要比memcached丰富,除了标准的通常意义的键值对,Redis还支持List,Set, Hashes,Sorted Set等数据结构

基本命令

Memcached的命令或者说通讯协议非常简单,Server所支持的命令基本就是对特定key的添加,删除,替换,原子更新,读取等,具体包括 Set, Get, Add, Replace, Append, Inc/Dec 等等

Memcached的通讯协议包括文本格式和二进制格式,用于满足简单网络客户端工具(如telnet)和对性能要求更高的客户端的不同需求

Redis的命令在KV(String类型)上提供与Memcached类似的基本操作,在其它数据结构上也支持基本类似的操作(当然还有这些数据结构所特有的操作,如Set的union,List的pop等)而支持更多的数据结构,在一定程度上也就意味着更加广泛的应用场合

除了多种数据结构的支持,Redis相比Memcached还提供了许多额外的特性,比如Subscribe/publish命令,以支持发布/订阅模式这样的通知机制等等,这些额外的特性同样有助于拓展它的应用场景

Redis的客户端-服务器通讯协议完全采用文本格式(在将来可能的服务器间通讯会采用二进制格式)

事务

redis通过Multi / Watch /Exec等命令可以支持事务的概念,原子性的执行一批命令。在2.6以后的版本中由于添加了对Script脚本的支持,而脚本固有的是以transaction事务的方式执行的,并且更加易于使用,所以不排除将来取消Multi等命令接口的可能性

Memcached的应用模式中,除了increment/decrement这样的原子操作命令,不存在对事务的支持

数据备份,有效性,持久化等

memcached不保证存储的数据的有效性,Slab内部基于LRU也会自动淘汰旧数据,客户端不能假设数据在服务器端的当前状态,这应该说是Memcached的Feature设定,用户不必太多关心或者自己管理数据的淘汰更新工作,当然是否适合你的应用,取决于具体的需求,它也可能成为你需要精确自行控制Cache生命周期的一个障碍

Memcached也不做数据的持久化工作,但是有许多基于memcached协议的项目实现了数据的持久化,例如memcacheDB使用BerkeleyDB进行数据存储,但本质上它已经不是一个Cache Server,而只是一个兼容Memcached的协议key-valueData Store了

Redis可以以master-slave的方式配置服务器,Slave节点对数据进行replica备份,Slave节点也可以充当Read only的节点分担数据读取的工作

Redis内建支持两种持久化方案,snapshot快照和AOF 增量Log方式。快照顾名思义就是隔一段时间将完整的数据Dump下来存储在文件中。AOF增量Log则是记录对数据的修改操作(实际上记录的就是每个对数据产生修改的命令本身),两种方案可以并存,也各有优缺点,具体参见http://redis.io/topics/persistence

以上Redis的数据备份持久化方案等,如果不需要,为了提高性能,也完全可以Disable

性能

性能方面,两者都有一些自己考虑和实现

Memcached

memcached自身并不主动定期检查和标记哪些数据需要被淘汰,只有当再次读取相关数据时才检查时间戳,或者当内存不够使用需要主动淘汰数据时进一步检查LRU数据

Redis

Redis为了减少大量小数据CMD操作的网络通讯时间开销 RTT (Round Trip Time),支持pipeline和script技术

  • 所谓的pipeline就是支持在一次通讯中,发送多个命令给服务器批量执行,带来的代价是服务器端需要更多的内存来缓存查询结果。
  • Redis内嵌了LUA解析器,可以执行lua 脚本,脚本可以通过eval等命令直接执行,也可以使用script load等方式上传到服务器端的script cache中重复使用

这两种方式都可以有效地减少网络通讯开销,增加数据吞吐率

对于KV的操作,Memcached和Redis都支持Multiple的Get和Set命令(Memcached的Multiple Set命令貌似只在二进制的协议中支持),这同样有利于性能的提升

实际性能方面,网上有很多测试比较,给出的结果各不相同,这无疑和各种测试的测试用例,测试环境,和测试时具体使用的客户端Library实现有关。但是总体看下来,比较靠谱的结论是在kv类操作上,两者的性能接近,Memcached的结构更加简单,理论上应该会略微快一些。

集群

memcached的服务器端互相完全独立,客户端通常通过对键值应用Hash算法决定数据的分区,为了减少服务器的增减对Hash结果的影响,导致大面积的缓存失效,多数客户端实现了一致性hash算法

Redis计划在服务器端内建对集群的支持,但是目前代码还处于alpha阶段(貌似已经Design了两三年了?)在此之前,同样可以认为每个Redis服务器实例相互之间是完全独立的,需要依靠客户端处理分区算法和可用服务器列表管理的工作。

Redis官方推荐的用于Sharding的客户端程序库是Twitter的开源项目 Twemproxy, Twemproxy同时支持Memcached和Redis的文本通讯协议。

需要注意的是,Redis的许多命令在集群环境下是不能正确运行的,例如set的交集,以及跨节点的事务操作等等,因为目前的Redis集群设计,根本目标也就是服务器之间互相汇报一下存活状态,以及对数据做荣誉备份平衡负载等而已,本质上对数据的跨节点操作并不提供任何额外支持,所以在数据服务的层面上来说,各个服务器依旧是完全独立的。

这些操作如果一定要实现,当然可以通过客户端代码来实现(效率有多高且不说),类似的问题memcached集群当然也会遇上,但是原本memcached就不支持复杂的操作和数据类型,许多运算逻辑原本就是由客户端代码或应用程序自己处理的。

MR类批处理应用

提供指定范围的遍历操作,是支持类似MapReduce这样的批处理应用逻辑的关键之一,但是要在基于hash方式存储的数据结构的基础上提供这样的支持并不容易(或者说要实现高效的范围或遍历操作并不容易)

Redis支持Scan操作用于遍历数据集,这一操作基于其内部数据结构及实现的限制,可以保证在Scan开始时的所有数据都能被获取到,但是不能保证不返回重复的数据,这需要由客户端来检查,或者客户端对此无所谓。Scan操作还支持Match条件用来过滤键值,虽然存在一定的局限性,例如match条件的比较是在获取数据之后再执行的,效率是一个问题,更明显的问题是不能保证每次scan的iterate过程都能返回同样数量的有效数据。

对于范围操作,Redis的Ordered Set支持在插入时指定数据的分数(Score)用于排序,而后支持在指定Score范围内的各种操作,虽然由于不支持基于字符串的或自定义的基准的Range操作,这样的范围操作应用起来有很大的局限性(或者说需要满足特定的应用模式),但是还是比没有好了

Memcached核心协议本身不支持任何范围类的操作,也没有对遍历操作的支持,甚至不存在官方合法的列举所有Key的操作,这当然很大程度上源于其设计思想和精简的架构

不过还是有一些兼容memcached协议的服务器实现了范围类操作,具体格式可以参考 https://code.google.com/p/memcached/wiki/RangeOps 所建议的标准

此外Redis的Hashes数据结构,在一定程度上可以满足获取特定子集数据的应用逻辑需求。

综上来说,如果要实现类似HBase支持的scan操作,不论是Redis还是memcached都无法做到,但是对于Redis来说,能否用于批处理类应用,不能一概而论,取决于具体的数据的格式逻辑和使用方式。通过适当的调整应用程序使用数据的方式,还是有可能在一定程度上实现对MR类批处理,或范围查询类应用逻辑的支持的。而对于键值分布在一个较大的连续空间,数量不确定,同时又无法很好的映射为数值进而使用ordered set来处理的这样一些数据结构,应该还是很难高效的分区遍历的

Memcached和Redis的更多相关文章

  1. Memcached vs Redis

    Memcached和Redis哪一个能有更好的表现? Redis可以看作是Memcached的超集,这让Redis不仅仅可以用来当缓存,也可以作为实际的数据存储. 强大的数据结构以及操作命令. 默认持 ...

  2. 谈谈Memcached与Redis

    1. Memcached简介 Memcached是以LiveJurnal旗下Danga Interactive公司的Bard Fitzpatric为首开发的高性能分布式内存缓存服务器.其本质上就是一个 ...

  3. Memcached和Redis对比和适用场景

    关于memcached和redis的使用场景,根据大神们的讨论和我在网上查到的资料,总结一下: 两者对比: redis提供数据持久化功能,memcached无持久化: redis的数据结构比memca ...

  4. Memcached、Redis OR Tair

    一.前言 非关系型数据库(NoSQL = Not Only SQL)的产品非常多,常见的有Memcached.Redis.MongoDB等优秀开源项目,相关概念和资料网上也非常丰富,不再重复描述,本文 ...

  5. Memcached 及 Redis 架构分析和比较

    Memcached和Redis作为两种Inmemory的key-value数据库,在设计和思想方面有着很多共通的地方,功能和应用方面在很多场合下(作为分布式缓存服务器使用等) 也很相似,在这里把两者放 ...

  6. Memcached、Redis和MongoDB的区别

    Memcached和Redis都是内存数据库. Memcached是多线程运行的: Redis单线程是单线程运行的: MongoDB是文档型的非关系型数据库..Net:RavenDB.

  7. memcached与redis 对比

    一. 综述 读一个软件的源码,首先要弄懂软件是用作干什么的,那memcached和redis是干啥的?众所周知,数据一般会放在数据库中,但是查询数据会相对比较慢,特别是用户很多时,频繁的查询,需要耗费 ...

  8. Memcached和Redis异同

    在考虑对应用程序的性能表现进行提升时,缓存机制往往是解决问题的重要起点,而Memcached与Redis则经常被作为初步方案来加以比较.这两套声名显赫的缓存引擎拥有着诸多相似之处,但它们同样也具备大量 ...

  9. memcached与redis

    Memcached VS Redis 问题:memcached 与 redis 哪个好? 答:这个问题它依赖与工程类别和它的数据. 1.它们都是内存 key/value 类型的高速与高可用的查询表. ...

  10. Memcached和Redis简介

    前言: 目前比较流行的缓存技术无疑是Memcached和Redis,两套缓存技术有着诸多的相似之处,但又具备大量的显著差异,作为新生的方案,Redis被视为首选,但是有些场景Memcached发挥的作 ...

随机推荐

  1. HTTP协议和SOCKS5协议

    HTTP协议和SOCKS5协议 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们平时上网的时候基本上是离不开浏览器的,尤其是搜索资料的时候,那么这个浏览器是如何工作的呢?用的又是 ...

  2. JS 求一组数中所有数的和以及平均值

    var arr = [10,20,30]; //计数器思想 var sum = 0; for(var i=0;i<arr.length;i++){ sum += arr[i]; } consol ...

  3. CM记录-选择合适的硬件

    hadoop的运行环境---hadoop/jvm/os/hw 原则1:主节点的可靠性要好于从节点:NameNode(Yarn-ResourceManager).DataNode(NodeManager ...

  4. 让富文本编辑器支持复制doc中多张图片直接粘贴上传

    Chrome+IE默认支持粘贴剪切板中的图片,但是我要发布的文章存在word里面,图片多达数十张,我总不能一张一张复制吧? 我希望打开文档doc直接复制粘贴到富文本编辑器,直接发布 感觉这个似乎很困难 ...

  5. log4j入门

    日志是应用软件中不可缺少的部分,Apache的开源项目log4j是一个功能强大的日志组件,提供方便的日志记录.在apache网站:jakarta.apache.org/log4j 可以免费下载到Log ...

  6. spring注解第07课 @Valid和@Validated的总结区分

    @Valid: @Valid注解用于校验,所属包为:javax.validation.Valid. ① 首先需要在实体类的相应字段上添加用于充当校验条件的注解,如:@Min,如下代码(age属于Gir ...

  7. 算法排序【时间复杂度O(n^2)】

    排序算法的两个原则: 1.输出结果为递增或者递减. 2.输出结果为原输入结果的排列或者重组. 平均时间复杂度为O(n^2)的排序算法有三种: 冒泡排序,插入排序,选择排序. 一.冒泡排序: 即谁冒泡泡 ...

  8. JavaScript之复杂对象的深拷贝(完全深拷贝)

    由于网上很多的深拷贝大都有如下问题: 1.灵活性.不能应对复杂对象(复杂对象是指:单一数组对象.多数组对象.多非数组对象.单一对象组合形成的复杂对象)的灵活拷贝 2.不变性.即 拷贝的对象与原对象的结 ...

  9. J - Long Long Message (最长公共子串)

    题目链接:https://cn.vjudge.net/contest/283743#problem/J 题目大意:给你两个字符串,问你两个字符串的最长的公共子串. 具体思路:把两个字符串合在一起,然后 ...

  10. mysql 案例 ~查询导致的tmp临时文件问题

    一 简介:之前遇到一个tmp分区暴涨的问题,后来经过大神的指点,遂分析写下 二 分类: 1  select语句出现 using temporay tmp 下出现 #sql_631a_1.MYD #sq ...