一、锁

线程为什么要有锁:

  += 、-= 赋值操作数据不安全(要经过取值、计算、放回值,3部操作)

  pop 、append 都是数据安全的(只有添加和删除,一次操作)

  队列也是数据安全的

1、同步锁

import os, time
from threading import Thread def work():
global n
temp = n
time.sleep(0.1)
n = temp - 1 if __name__ == '__main__':
n = 100
l = []
for i in range(100):
p = Thread(target=work)
p.start()
l.append(p)
for p in l:
p.join()
print(n) # 结果可能为99

多个线程抢占资源的情况

import threading
R=threading.Lock()
R.acquire()
'''
对公共数据的操作
'''
R.release()
import os,time
from threading import Thread,Lock def work(lock):
global n
lock.acquire()
temp = n
time.sleep(0.1)
n = temp - 1
lock.release() if __name__ == '__main__':
lock = Lock()
n = 100
l = []
for i in range(100):
p = Thread(target=work, args=(lock,))
p.start()
l.append(p)
for p in l:
p.join()
print(n) # 结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全

同步锁的引用

# 不加锁:并发执行,速度快,数据不安全

from threading import current_thread,Thread,Lock
import os,time def task():
global n
print('%s is running' %current_thread().getName())
temp=n
time.sleep(0.5)
n=temp-1 if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join() stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:0.5216062068939209 n:99
''' # 不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全 from threading import current_thread,Thread,Lock
import os,time def task():
# 未加锁的代码并发运行
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
# 加锁的代码串行运行
lock.acquire()
temp=n
time.sleep(0.5)
n=temp-1
lock.release() if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:53.294203758239746 n:0
''' # 有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊
# 没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是
# start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的
# 单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高. from threading import current_thread,Thread,Lock
import os,time def task():
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
temp=n
time.sleep(0.5)
n=temp-1 if __name__ == '__main__':
n=100
lock=Lock()
start_time=time.time()
for i in range(100):
t=Thread(target=task)
t.start()
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 start to run
Thread-2 start to run
......
Thread-100 start to run
主:350.6937336921692 n:0 #耗时是多么的恐怖
'''

互斥锁与join的区别

2、死锁与递归锁

  进程也有死锁与递归锁

  所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁

import time
from threading import Lock mutexA=Lock()
mutexA.acquire()
mutexA.acquire()
print(123)
mutexA.release()
mutexA.release()

  解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

  这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:

import time
from threading import RLock mutexA=RLock()
mutexA.acquire()
mutexA.acquire()
print(123)
mutexA.release()
mutexA.release()

  典型问题:科学家吃面

import time
from threading import Thread,Lock noodle_lock = Lock()
fork_lock = Lock()
def eat1(name):
noodle_lock.acquire()
print('%s拿到面条了' % name)
fork_lock.acquire()
print('%s拿到叉子了' % name)
print('%s吃面' % name)
time.sleep(0.3)
fork_lock.release()
print('%s放下叉子' % name)
noodle_lock.release()
print('%s放下面' % name) def eat2(name):
fork_lock.acquire()
print('%s拿到叉子了' % name)
noodle_lock.acquire()
print('%s拿到面条了' % name)
print('%s吃面' % name)
time.sleep(0.3)
noodle_lock.release()
print('%s放下面' % name)
fork_lock.release()
print('%s放下叉子' % name) if __name__ == '__main__':
name_list1 = ['alex', 'wusir']
name_list2 = ['nezha', 'yuan']
for name in name_list1:
Thread(target=eat1, args=(name,)).start()
for name in name_list2:
Thread(target=eat2, args=(name,)).start()

死锁现象

import time
from threading import Thread,RLock fork_lock = noodle_lock = RLock() def eat1(name):
noodle_lock.acquire()
print('%s拿到面条了' % name)
fork_lock.acquire()
print('%s拿到叉子了' % name)
print('%s吃面' % name)
time.sleep(0.3)
fork_lock.release()
print('%s放下叉子' % name)
noodle_lock.release()
print('%s放下面' % name) def eat2(name):
fork_lock.acquire()
print('%s拿到叉子了' % name)
noodle_lock.acquire()
print('%s拿到面条了' % name)
print('%s吃面' % name)
time.sleep(0.3)
noodle_lock.release()
print('%s放下面' % name)
fork_lock.release()
print('%s放下叉子' % name) if __name__ == '__main__':
name_list1 = ['alex', 'wusir']
name_list2 = ['nezha', 'yuan']
for name in name_list1:
Thread(target=eat1, args=(name,)).start()
for name in name_list2:
Thread(target=eat2, args=(name,)).start()

递归锁解决死锁问题

二、信号量

同进程的一样:

  Semaphore管理一个内置的计数器,
  每当调用acquire()时内置计数器-1;
  调用release() 时内置计数器+1;
  计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

信号量与池的区别:

  是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程

实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):

import time
from threading import Semaphore,Thread def func(index, sem):
sem.acquire()
print(index)
time.sleep(1)
sem.release() if __name__ == '__main__':
sem = Semaphore(5)
for i in range(10):
Thread(target=func, args=(i, sem)).start()

三、事件

同进程的一样:

  线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其 他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就会变得非常棘手。为了解决这些问题,我们需要使用threading库中的Event对象。 对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

event.isSet():返回event的状态值;
event.wait():如果 event.isSet()==False将阻塞线程;
event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
event.clear():恢复event的状态值为False。

  例如,有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作

import random
import time
from threading import Event, Thread def check(e):
print('开始检测数据库连接')
time.sleep(random.randint(1, 5)) # 检测数据库连接
e.set() # 成功了 def connect(e):
for i in range(3):
e.wait(0.5)
if e.is_set():
print('数据库连接成功')
break
else:
print('尝试连接数据库%s次失败' % (i+1))
else:
raise TimeoutError # 3次都不成功则主动抛异常 e = Event()
Thread(target=connect, args=(e,)).start()
Thread(target=check, args=(e,)).start()

实例

四、条件

使得线程等待,只有满足某条件时,才释放n个线程

Python提供的Condition对象提供了对复杂线程同步问题的支持。Condition被称为条件变量,除了提供与Lock类似的acquire和release方法外,还提供了wait和notify方法。线程首先acquire一个条件变量,然后判断一些条件。如果条件不满足则wait;如果条件满足,进行一些处理改变条件后,通过notify方法通知其他线程,其他处于wait状态的线程接到通知后会重新判断条件。不断的重复这一过程,从而解决复杂的同步问题。

详细说明

代码说明:

from threading import Condition, Thread

def func(con, index):
print('%s在等待' % index)
con.acquire()
con.wait()
print('%s do something' % index)
con.release() con = Condition()
for i in range(10):
Thread(target=func, args=(con, i)).start()
# con.acquire()
# con.notify_all()
# con.release()
count = 10
while count > 0:
num = int(input('>>>'))
con.acquire()
con.notify(num)
count -= num
con.release()

五、定时器

定时器,指定n秒后执行某个操作

from threading import Timer

def func():
print('执行我啦') Timer(5, func).start()
print('主线程')

六、队列

queue队列 :使用import queue,用法与进程Queue一样

queue is especially useful in threaded programming when information must be exchanged safely between multiple threads.

class queue.Queue(maxsize=0)   # 先进先出
import queue

q=queue.Queue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(先进先出):
first
second
third
'''

class queue.LifoQueue(maxsize=0)   # 后进先出

import queue

q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(后进先出):
third
second
first
'''

class queue.PriorityQueue(maxsize=0)   # 存储数据时可设置优先级的队列

import queue

q=queue.PriorityQueue()
# put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c')) print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
'''

《Python》线程之锁、信号量、事件、条件、定时器、队列的更多相关文章

  1. Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures

    参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...

  2. python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...

  3. python 并发编程 锁 / 信号量 / 事件 / 队列(进程间通信(IPC)) /生产者消费者模式

    (1)锁:进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理. 虽然使用加锁的形式实现了 ...

  4. 《python》join、守护进程、锁/信号量/事件、进程队列

    一.multiprocess.process模块 1.join方法 阻塞主进程,等待子进程执行完毕再放开阻塞 import time import random from multiprocessin ...

  5. 进程同步控制(锁,信号量,事件), 进程通讯(队列和管道,生产者消费者模型) 数据共享(进程池和mutiprocess.Pool模块)

    参考博客 https://www.cnblogs.com/xiao987334176/p/9025072.html#autoid-1-1-0 进程同步(multiprocess.Lock.Semaph ...

  6. python 线程之 threading(四)

    python 线程之 threading(三) http://www.cnblogs.com/someoneHan/p/6213100.html中对Event做了简单的介绍. 但是如果线程打算一遍一遍 ...

  7. python 线程之 threading(三)

    python 线程之 threading(一)http://www.cnblogs.com/someoneHan/p/6204640.html python 线程之 threading(二)http: ...

  8. 铁乐学python_Day42_线程-信号量事件条件

    铁乐学python_Day42_线程-信号量事件条件 线程中的信号量 同进程的一样,Semaphore管理一个内置的计数器, 每当调用acquire()时内置计数器-1:调用release() 时内置 ...

  9. python 线程之_thread

    python 线程之_thread _thread module: 基本用法: def child(tid): print("hello from child",tid) _thr ...

  10. ucos中信号量 事件标志 消息队列都怎么用

    信号量 事件标志和消息队列分别应用于什么场景(反正我学的时候有点闹不清,现在总结一下): 信号量和事件标志用于任务同步.详细来说,这个功能可以替代以前裸机中你打一个标记的功能,比如使用了一个定时器,5 ...

随机推荐

  1. appium --log-timestamp > appium.log

     appium --log-timestamp > appium.log 

  2. 如何下载一个物种的全部EST序列 | NCBI | 表达序列标签

    EST:表达序列标签,expressed sequence tags . 顾名思义,很好理解,就是表达出来的序列,即从基因组DNA上表达出来的RNA,但是我们没法测序RNA,所以我们最终测的是表达序列 ...

  3. English trip V1 - B 22. Here,There and Everywhere 无处不在 Teacher:Taylor Key: Be + Ving

    In this lesson you will learn to describe what you see. 课上内容(Lesson) # How's the weather today? 今天的天 ...

  4. 用C#实现多种方式播放Wav声音

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  5. Okhttp 插入缓存拦截器 解析

    我们在做网络请求的时候,如果网络请求过于频繁而且请求的数据变动不大,或者基本没有变动,这个时候如果没有缓存功能,我们想一下 会浪费掉多少资源,一次请求刷新一次,去请求一次,不但会消耗用户的流量,而且还 ...

  6. 动态加载DataGrid表头及数据

    初始化表头 js生成前端 /*初始化表头*/ function initDataGridTitle(id) { $.ajax({ url: '/${appName}/report/***/***', ...

  7. adb 获取包名

    1.aapt dump badging   指定的路径 +包名      ======= adb logcat|findstr START 2.顶部和尾部有包名和activity

  8. python记录_day18 反射 判断函数与方法

    一.三个内置函数 1.issubclass(a, b)  判断a类是否是b类的子类 class Foo: pass class Zi(Foo): pass class Sun(Zi): pass pr ...

  9. layuitable设置数据表

    如图,要设置类似这样的格式 步骤如下: 1. 设置一个列表表格 2. 获取数据 table.render({ elem: '#pl-list' ,id: 'pl_table' ,height: 480 ...

  10. constant函数

    返回一个常量的值 constant('constname');