Longest Common Subsequence (DP)
Given two strings, find the longest common subsequence (LCS).
Your code should return the length of LCS.
Example
For "ABCD"
and "EDCA"
, the LCS is "A"
(or "D"
, "C"
), return 1
.
For "ABCD"
and "EACB"
, the LCS is "AC"
, return 2
.
最长公共子序列的定义:
最长公共子序列问题是在一组序列(通常2个)中找到最长公共子序列(注意:不同于子串,LCS不需要是连续的子串).
State: f[i][j] 表示在字符串A中前i个字符与B字符串前j个字符的最长LCS。
Fuction: f[i][j] = max(f[i - 1][j], f[i][j - 1]) if (A[i -1] != B[j - 1]) 对应与 “abc” “ab” 和 “ab" 和”abc“。if(A[i - 1] == B[j - 1]) f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1][j -1] + 1).
Initialization: int [][] f = new int[A.length() + 1][B.length() + 1]
Answer:f[A.length()][B.length()]
public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
public int longestCommonSubsequence(String A, String B) {
int m = A.length();
int n = B.length();
if (m == 0 || n == 0) {
return 0;
}
int[][] f = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
if (A.charAt(i - 1) == B.charAt(j - 1)) {
f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + 1);
}
}
}
return f[m][n];
}
}
Longest Common Subsequence (DP)的更多相关文章
- UVA 10405 Longest Common Subsequence (dp + LCS)
Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- LintCode Longest Common Subsequence
原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- Longest Common Subsequence & Substring & prefix
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Lintcode:Longest Common Subsequence 解题报告
Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...
- [HackerRank] The Longest Common Subsequence
This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...
- [Algorithms] Longest Common Subsequence
The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...
- 2017-5-14 湘潭市赛 Longest Common Subsequence 想法题
Longest Common Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Longest Common Subs ...
随机推荐
- [转帖]支撑双11每秒17.5万单事务 阿里巴巴对JVM都做了些什么?
支撑双11每秒17.5万单事务 阿里巴巴对JVM都做了些什么? https://mp.weixin.qq.com/s?__biz=MzA3OTg5NjcyMg==&mid=2661671930 ...
- Word、Excel、PPT 2016、2013、2010、2007 没有保存或断电导致文件丢失怎么恢复?
1. 前言 没有保存文档还能恢复吗?死机.断电.蓝屏导致来不及保存文档,还能恢复吗?答案当然是可以的!Office中本身就有恢复文档的功能,可以帮助我们最大化的挽回损失. Office2013与Off ...
- Python之系统编程笔记
概念 命令行工具. Shell 脚本. 系统管理 系统模块 sys 提供一组功能映射Python运行时的操作系统 os 提供跨平台可移植的操作系统编程接口 os.path 提供文件及目 ...
- 文件操作之打开文件与读写文件——C语言
一.fopen 函数原型:FILE *fopen( const char *filename, const char *mode ); 返回值:返回值类型为FILE *,打开文件成功返回指向打开文件的 ...
- EXIT(外部中断)控制实验
实验目的 设计使用外接的按键来作为触发源,使得控制器产生中断,并在中断服务函数中实现控制小灯的亮灭. 按键硬件点路 编程要点 初始化用来产生中断的 GPIO: 初始化 EXTI: 配置 NVIC: 编 ...
- prometheus+grafana监控redis
prometheus+grafana监控redis redis安装配置 https://www.cnblogs.com/autohome7390/p/6433956.html redis_export ...
- (十二)Hibernate中的多表操作(2):单向多对一
由“多”方可知“一”方的信息,比如多个员工使用同一栋公寓,员工可以知道公寓的信息,而公寓无法知道员工的信息. 案例一:使用xml配置 pojo类 Group.java package bean; // ...
- Docker启动Elasticsearch报错vm.max_map_count
报错信息如下 max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144] 临 ...
- keras 切换后端 TensorFlow,cntk,theano
参考 https://keras.io/#configuring-your-keras-backend https://keras.io/backend/ Switching from one bac ...
- Array + two points leetcode.15-3Sum
题面 Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Fi ...