Given two strings, find the longest common subsequence (LCS).

Your code should return the length of LCS.

Example

For "ABCD" and "EDCA", the LCS is "A" (or "D""C"), return 1.

For "ABCD" and "EACB", the LCS is "AC", return 2.

最长公共子序列的定义:

最长公共子序列问题是在一组序列(通常2个)中找到最长公共子序列(注意:不同于子串,LCS不需要是连续的子串).

State: f[i][j] 表示在字符串A中前i个字符与B字符串前j个字符的最长LCS。

Fuction: f[i][j] = max(f[i - 1][j], f[i][j - 1]) if (A[i -1] != B[j - 1]) 对应与 “abc” “ab” 和 “ab" 和”abc“。if(A[i - 1] == B[j - 1]) f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1][j -1] + 1).

Initialization: int [][] f = new int[A.length() + 1][B.length() + 1]

Answer:f[A.length()][B.length()]

  1. public class Solution {
  2. /**
  3. * @param A, B: Two strings.
  4. * @return: The length of longest common subsequence of A and B.
  5. */
  6. public int longestCommonSubsequence(String A, String B) {
  7. int m = A.length();
  8. int n = B.length();
  9. if (m == 0 || n == 0) {
  10. return 0;
  11. }
  12. int[][] f = new int[m + 1][n + 1];
  13. for (int i = 1; i <= m; i++) {
  14. for (int j = 1; j <= n; j++) {
  15. f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
  16. if (A.charAt(i - 1) == B.charAt(j - 1)) {
  17. f[i][j] = Math.max(f[i][j], f[i - 1][j - 1] + 1);
  18. }
  19. }
  20. }
  21. return f[m][n];
  22. }
  23. }

        

Longest Common Subsequence (DP)的更多相关文章

  1. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

  2. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  3. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence & Substring & prefix

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. Lintcode:Longest Common Subsequence 解题报告

    Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...

  7. [HackerRank] The Longest Common Subsequence

    This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...

  8. [Algorithms] Longest Common Subsequence

    The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...

  9. 2017-5-14 湘潭市赛 Longest Common Subsequence 想法题

    Longest Common Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Longest Common Subs ...

随机推荐

  1. [转帖]彻底弄懂UTF-8、Unicode、宽字符、locale

    彻底弄懂UTF-8.Unicode.宽字符.locale linux后端开发   已关注   彻底弄懂UTF-.Unicode.宽字符.locale unicode 是字符集 utf-8是编码格式.. ...

  2. goroutine基础

    程序1: package main import ( "fmt" "time" ) func test () { var i int for { fmt.Pri ...

  3. python 虚拟环境 venv 简单用法

    Python3.3以上的版本通过venv模块原生支持虚拟环境,可以代替Python之前的virtualenv.该venv模块提供了创建轻量级“虚拟环境”,提供与系统Python的隔离支持.每一个虚拟环 ...

  4. 关于GPU的传输速度与什么有关??

    1. i5-8250U   1.6GHz 2. PCIE 3  4K 105fps  =  10.45Gps   4K 一帧  = 99.5Mbit 4K YUV444 + mask = 3840*2 ...

  5. JS有关引用对象的拷贝问题

    JS中有关引用对象的拷贝问题 问题描述:在开发过程中,拷贝一个对象数组给另一个数组的时候,改变新数组中对象的属性值,原数组中的对象属性值也跟着改变了. 例如新定义一个数组arr1,里面有两个对象,然后 ...

  6. pymsql及事务

    MySQL知识点补充 1.去重 distinct select distinct name,age from t1; # 针对查找出来的结果整行(记录)进行去重,也就是相同行只保存一个 注意点:dis ...

  7. hashCode 及hashcode与equals的区别

    1.hashCode是jdk根据对象的地址或者字符串或者数字算出来的int类型的数值 详细了解请 参考 [1]  public int hashCode()返回该对象的哈希码值.支持此方法是为了提高哈 ...

  8. You're currently running Fcitx with GUI 错误解决 Fcitx

    在英文版ubuntu配置输入法时,点击 Configure Current Input Method 会报以下的错误: You’re currently running Fcitx with GUI, ...

  9. 华擎 J3455 主板装 Linux 系统

    入手华擎J3455 ITX 主板,装备安装一个 redhat 来学习linux,及做一个家庭 web 服务器.但安装过程一波三折. 问题1.使用U盘引导不了,首先华擎这块板是 UEFI 板,用之前的老 ...

  10. 13 Windows编程——系统内置窗口子类型之静态子窗口

    静态子窗口类型 wndclass:static 源码 #include<Windows.h> #include<Windowsx.h> HINSTANCE G_h; LRESU ...