题目

输入

第一行包含两个整数N、M。N表示路口的个数,M表示道路条数。接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号。接下来N行,每行一个整数,按顺序表示每个路口处的ATM机中的钱数。接下来一行包含两个整数S、P,S表示市中心的编号,也就是出发的路口。P表示酒吧数目。接下来的一行中有P个整数,表示P个有酒吧的路口的编号

输出

输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。

样例输入

样例输出

提示

%的输入保证N, M<=。所有的输入保证N, M<=。每个ATM机中可取的钱数为一个非负整数且不超过4000。输入数据保证你可以从市中心沿着Siruseri的单向的道路到达其中的至少一个酒吧。

这道题我们需要用tarjan+spfa(用来跑最长路)

首先要做的是把图上的点跑一边tarjan求出所有的强连通分量,把强连通分量上的点的父节点都设成该强连通分量的根

//因为强连通分量上的点只要能到达一个就可以到达该强连通分量上的其它点,并且一条路可以走很多遍。

再把所有强连通分量中的除了根以外的点上的值全部加到根上。

然后将所有不在强连通分量中的点以及所有强连通分量的根为新的点,重新建图

对新建的图进行spfa求最长路

最后找出所有酒吧的父节点找出来,找出这些节点中到起点值最大的

//因为强连通分量上的点只要能到达一个就可以到达该强连通分量上的其它点,并且一条路可以走很多遍。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int cnt, hh[], hhh[], stack[];
int dfn[], low[], num, ans, q, top, w[];
int father[], dd[], j, n, h, t, l[], z, x, y, m, s, p;
bool d[];
struct node
{
int v, next;
};
node b[], ss[];
void add(int aa, int bb)//连边
{
b[++cnt].v = bb;
b[cnt].next = hh[aa];
hh[aa] = cnt;
}
void addd(int aa, int bb)//连接新建图上的边
{
ss[++cnt].v = bb;
ss[cnt].next = hhh[aa];
hhh[aa] = cnt;
} void tarjan(int k)
{
int i;
dfn[k] = low[k] = ++num;
stack[++top] = k;
d[k] = true;
for(i = hh[k]; i != ; i = b[i].next)
{
int e = b[i].v;
if(!dfn[e])
{
tarjan(e);
low[k] = min(low[k], low[e]);
}
else if(d[e] == true)
{
low[k] = min(low[k], dfn[e]);
}
}
if(dfn[k] == low[k])
{
d[k] = false;
father[k] = k;
while(stack[top] != k)
{
w[k] += w[stack[top]];
father[stack[top]] = k;
d[stack[top--]] = false;
}
top--;
} }
void rebuild()
{
cnt = ;
int i;
for(i = ; i <= n; i++)
{
for(j = hh[i]; j != ; j = b[j].next)
{
t = b[j].v;
if(father[i] == father[t])continue;
addd(father[i], father[t]);
}
}
}
void spfa()
{
int i;
q = s;
memset(d, , sizeof(d));
h = , t = ;
l[q] = w[q];
d[q] = true;
while()
{
if(h > t)break; for(i = hhh[q]; i != ; i = ss[i].next)
{
z = ss[i].v;
if(l[q] + w[z] > l[z])
{
l[z] = l[q] + w[z];
if(d[z])continue;
dd[++t] = z;
d[z] = true;
}
}
d[q] = false;
q = dd[++h];
}
}
int main()
{
int i;
scanf("%d %d", &n, &m);
for(i = ; i <= m; i++)
{
scanf("%d %d", &x, &y);
add(x, y);
}
for(i = ; i <= n; i++)
{
scanf("%d", &w[i]);
}
scanf("%d %d", &s, &p);
for(j = ; j <= n; j++)
{
if(!dfn[j])tarjan(j);
}
rebuild();//利用tarjan求出所有强连通分量 s = father[s];//如果起点在一个强连通分量中,那么将起点换成该强连通分量的根
//因为强连通分量上的点只要能到达一个就可以到达该强连通分量上的其它点,并且一条路可以走很多遍。
//重要的事说三遍
spfa();//利用spfa求出最长路 for(i = ; i <= p; i++)
{
scanf("%d", &q);
ans = max(ans, l[father[q]]);
}
printf("%d", ans);
return ;
}

bzoj 1179[Apio2009]Atm (tarjan+spfa)的更多相关文章

  1. BZOJ 1179: [Apio2009]Atm( tarjan + 最短路 )

    对于一个强连通分量, 一定是整个走或者不走, 所以tarjan缩点然后跑dijkstra. ------------------------------------------------------ ...

  2. bzoj 1179 [Apio2009]Atm 缩点+最短路

    [Apio2009]Atm Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 4290  Solved: 1893[Submit][Status][Dis ...

  3. 【BZOJ1179】[Apio2009]Atm (tarjan+SPFA)

    显而易见的tarjan+spfa...不解释了 ; type edgetype=record toward,next:longint; end; var edge1,edge2:..maxn] of ...

  4. bzoj 1179: [Apio2009]Atm【tarjan+spfa】

    明明优化了spfa还是好慢-- 因为只能取一次值,所以先tarjan缩点,把一个scc的点权和加起来作为新点的点权,然后建立新图.在新图上跑spfa最长路,最后把酒吧点的dis取个max就是答案. # ...

  5. bzoj 1179 [Apio2009]Atm——SCC缩点+spfa

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1179 显然SCC缩点. 然后准备倒着拓扑序推到st,结果WA. 听TJ说dj求最长路会发生不 ...

  6. bzoj 1179: [Apio2009]Atm

    Description Input 第 一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路 的起点和终点的 ...

  7. BZOJ 1179 [Apio2009]Atm(强连通分量)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1179 [题目大意] 给出一张有向带环点权图,给出一些终点,在路径中同一个点的点权只能累 ...

  8. 缩点+spfa最长路【bzoj】 1179: [Apio2009]Atm

    [bzoj] 1179: [Apio2009]Atm Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri ...

  9. 【BZOJ-1179】Atm Tarjan + SPFA

    1179: [Apio2009]Atm Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 2407  Solved: 993[Submit][Status ...

随机推荐

  1. C#+OpenGL+FreeType显示3D文字(1) - 从TTF文件导出字形贴图

    C#+OpenGL+FreeType显示3D文字(1) - 从TTF文件导出字形贴图 +BIT祝威+悄悄在此留下版了个权的信息说: 最近需要用OpenGL绘制文字,这是个很费时费力的事.一般的思路就是 ...

  2. 垃圾回收机制GC知识再总结兼谈如何用好GC

    一.为什么需要GC 应用程序对资源操作,通常简单分为以下几个步骤: 1.为对应的资源分配内存 2.初始化内存 3.使用资源 4.清理资源 5.释放内存 应用程序对资源(内存使用)管理的方式,常见的一般 ...

  3. C# BS消息推送 SignalR Hubs环境搭建与开发(二)

    1. 前言 本文是根据网上前人的总结得出的. 环境: SignalR2.x,VS2015,Win10 2. 开始开发 1)新建一个MVC项目,叫做SignalRDemo 2)安装SignalR包 In ...

  4. Uiautomator 2.0之UiObject2类学习小记

    1. 基础动作 1.1. 相关API介绍 API 说明 clear() 清楚编辑框内的内容 click() 点击一个对象 clickAndWait(EventCondition<R> co ...

  5. 在Thinkphp3.2.3框架下实现自动获取客户端IP地址的get_client_ip()函数

    在Thinkphp框架下使用get_client_ip()函数获取客户端IP地址十分方便: 一行代码便可以实现:$ip = get_client_ip(); 但当我们测试时会遇到后台获取的IP地址显示 ...

  6. ES6 - Note3:数组、对象与函数的扩展

    一.数组的扩展,ES6在数组扩展了一些API,以实现更多的功能 1.Array.from:可以将类数组和可遍历的数据结构转换成真正的数组,如下所示 var a = { '0':1,'1':1,leng ...

  7. OracleDBA之数据库管理

    以下这些东西是我的麦库上存的当时学Oracle的学习笔记今天拿出来和大家分享一下,转载请注明出处,下面用的Oracle的版本是10g,用的时WinServer2003的操作系统,可能有些命令和Orac ...

  8. 用CSS制作带图标的按钮

    先上一张效果图

  9. java操作数据库增删改查的小工具2--TxQueryRunner

    当涉及到多表查询时,如数据库中有两张表分别为t_person和t_address,表结构如下: 其中t_person的外键为t-address的主键aid, 新建两个javaBean类,Person ...

  10. 搭建OpenGL环境-Windows/VS2013

    对于opengl的环境,简单搭建的话其实和opencv差不多,你会看到下面的过程与opencv类似,不同的就是某些文件需要自己找(因为不是集成的,各个拓展需要单独下载) 1.首先,对于opengl头文 ...