题解 [BZOJ2159] Crash的文明世界
解析
这题一眼换根DP啊
首先,我们考虑一下如何转换\(n^m\)这个式子,
先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\)
其中\(S(m,j)\)表示第二类斯特林数,
(其实就是把\(m\)个不同的小球放到\(j\)个相同的盒子里,且盒子不为空的方案数)
我们感性理解一下(懒得不会推式子),
\(n^m\)其实就表示将\(m\)个不同的球放入\(n\)个不同的盒子里,
而我们可以枚举有\(j\)个盒子里面放了小球,
那么方案数就是\(S(m,j)\)(如上)\(*C_n^j\)(选出\(j\)个盒子的方案数)\(*j!\)(因为盒子是不同的所以有排列)
那么上面的式子就很好理解了吧.
然而这到底有什么用?
我们将题目中的条件代入到上式中,
对于每个节点\(x\),
我们要求的是\(\sum_{i=1}^n dis(x,i)^k\),其中\(dis(i,j)\)表示\(i,j\)的距离,
首先考虑\(x\)为根,
那么\(dis(x,i)\)也就是\(dep[i]\)(深度)(\(dep[x]=0\)).
而式子就可以变形成\(\sum_{i=1}^n\sum_{j=0}^kS(k,j)C_{dep[i]}^jj!\)
\(=\sum_{j=0}^k\sum_{i=1}^nS(k,j)j!C_{dep[i]}^j\)
\(=\sum_{j=0}^kS(k,j)j!\sum_{i=1}^nC_{dep[i]}^j\)
所以我们可以发现,
真正与节点有关的,就是\(\sum_{i=1}^nC_{dep[i]}^j\),
而前面的都是常数.
所以,我们设\(f[x][j]\)表示\(\sum_iC_{dep[i]}^j\),\(i\)为以\(x\)为根的子树中的节点,
而根据\(C_n^m=C_{n-1}^m+C_{n-1}^{m-1}\),
我们可以得到\(f[x][j]=\sum_iC_{dep[i]-1}^j+C_{dep[i]-1}^{j-1}\),
而对于\(x\)的子节点\(i\)来说,在\(i\)的子树中,每个点的深度对比以\(x\)为根都减了一,
因此,递推式就能出来了:
\(f[x][j]=\sum_{i=son[x]}f[i][j]+f[i][j-1]\).
然而,这个式子只对于一开始钦定的整棵树的根有效,
因此我们还需要来一次换根DP,
这个看代码就能理解了:
#include <iostream>
#include <cstdio>
#include <cstring>
#define ll long long
#define fre(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout)
using namespace std;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
}
const int N=100001;
const int Mod=10007;
struct edge{int to,next;}e[N<<1];
int n,K;
int head[N],cnt;
int jc[201],s[201][201];
int f[N][201],g[N][201],tem[201];
inline void add(int x,int y){
e[++cnt]=(edge){head[x],y};head[x]=cnt;
}
inline void dfs(int x,int fa){
f[x][0]=1;
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;if(k==fa) continue;
dfs(k,x);f[x][0]=(f[x][0]+f[k][0])%Mod;
for(int j=1;j<=K;j++) f[x][j]=(f[x][j]+f[k][j]+f[k][j-1])%Mod;
}
}
inline void dfs2(int x,int fa){
for(int j=0;j<=K;j++) g[x][j]=f[x][j];
if(fa){
for(int j=1;j<=K;j++) tem[j]=(g[fa][j]-f[x][j]+Mod-f[x][j-1]+Mod)%Mod;
tem[0]=(g[fa][0]-f[x][0]+Mod)%Mod;
for(int j=1;j<=K;j++) g[x][j]=(g[x][j]+tem[j]+tem[j-1])%Mod;
g[x][0]=(g[x][0]+tem[0])%Mod;
}
for(int i=head[x];i;i=e[i].to){
int k=e[i].next;if(k==fa) continue;
dfs2(k,x);
}
}
int main(){
n=read();K=read();
for(int i=1;i<n;i++){
int x=read(),y=read();
add(x,y);add(y,x);
}
jc[0]=1;s[1][1]=s[0][0]=1;
for(int i=1;i<=K;i++) jc[i]=jc[i-1]*i%Mod;
for(int i=1;i<=K;i++)
for(int j=1;j<=K;j++)
s[i][j]=(s[i-1][j]*j+s[i-1][j-1])%Mod;//预处理
dfs(1,0);/*求出f[x][j]*/dfs2(1,0);/*换根DP*/
for(int i=1;i<=n;i++){
ll ans=0;
for(int j=0;j<=K;j++) ans=(ans+s[K][j]*jc[j]%Mod*g[i][j]%Mod)%Mod;
printf("%lld\n",(ans+Mod)%Mod);
}
return 0;
}
题解 [BZOJ2159] Crash的文明世界的更多相关文章
- BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】
题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...
- BZOJ2159 Crash的文明世界(树形dp+斯特林数)
根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...
- [BZOJ2159]Crash的文明世界(斯特林数+树形DP)
题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...
- BZOJ2159 Crash的文明世界
Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...
- BZOJ2159 : Crash 的文明世界
$x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$ 设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$. 则可以利 ...
- BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数
题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
- 【BZOJ2159】Crash的文明世界
[2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...
- P4827「国家集训队」 Crash 的文明世界
「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...
随机推荐
- 编译+远程调试spark
一 编译 以spark2.4 hadoop2.8.4为例 1,spark 项目根pom文件修改 pom文件新增 <profile> <id>hadoop-2.8</id ...
- Synchronized&Lock&AQS详解
加锁目的:由于线程执行的过程是不可控的,所以需要采用同步机制来协同对对象可变状态的访问. 加锁方式:java锁分为两种--显示锁和隐示锁,本质区别在于显示锁需要的是程序员自己手动的进行加锁与解锁如Re ...
- Python 装饰&生成&迭代器
Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...
- IP 、127.0.0.1、localhost 三者区别
一.Ping命令 1.Ping命令,用来检查两台物理机间的TCP/IP网络是否通畅或者网络连接速度,是TCP/IP协议的一部分. 2.PING (Packet Internet Groper),因特网 ...
- Git详细操作
Git详细操作 一.本地配置 1公钥钥配置 1.参考帮助文档:https://gitee.com/help/ 仓库管理 =公钥管理 =生成/添加SSH公钥 ssh-keygen -t rsa -C & ...
- 【php设计模式】代理模式
代理模式就是实现一个类代表另一个类的功能的一种结构性设计模式. 主要解决在直接访问对象时带来的问题,比如说:要访问的对象在远程的机器上.在面向对象系统中,有些对象由于某些原因(比如对象创建开销很大,或 ...
- Javascript的学习清单
Javascript的学习清单 Javascript学习资源 程序员必读书籍 深入理解JavaScript系列 es6教程 jQuery中文文档 vue官网 zeptojs中文版 常用的插件与UI组件 ...
- 基于Vue实现拖拽效果
参考地址:基于Vue实现拖拽效果 参考链接中讲的比较详细,我只使用了其中自定义指令的方法.整体代码如下: <template> <!-- 卡片 --> <div clas ...
- ESP8266 UDP通信
#include "driver/uart.h" #include "espconn.h" void ICACHE_FLASH_ATTR user_rf_pre ...
- ASE19团队项目alpha阶段model组 scrum7 记录
本次会议于11月11日,19时整在微软北京西二号楼sky garden召开,持续15分钟. 与会人员:Jiyan He, Kun Yan, Lei Chai, Linfeng Qi, Xueqing ...