题意

从 $n$ 个点中选择一点,使得其他点到其的切比雪夫距离最小($0 < n \leq 1e5$).

分析

定理:$(x_1, y_1)$ 与 $(x_2, y_2)$ 的曼哈顿距离等于 $(x_1-y_1, x_1+y_1)$ 与 $(x_2-y_2, x_2+y_2)$ 的切比雪夫距离。

转换成曼哈顿距离中的坐标,求曼哈顿距离。

由于这个点必须是 $n$ 个点中的一点,所以 $x,y$ 还有限制关系(不然直接排序取中点就完事了)。

我们对分别对 $x,y$ 排序并求出前缀和,

然后枚举这 $n$ 个点,对于每个点,可以 $O(log n)$ 得到 $x$ 方向和 $y$ 方向的绝对值之和,两者相加即是答案。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll INF = (1LL) << ;
const int maxn = 1e5 + ;
int n, x[maxn], y[maxn], sx[maxn], sy[maxn];;
ll sum_x[maxn], sum_y[maxn]; struct Node{
int x, y, id;
}p[maxn]; int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = ;i <= n;i++)
{
int a, b;
scanf("%d%d", &a, &b);
x[i] = sx[i] = a+b; y[i] = sy[i] = b-a;; //为了保证为整数,扩大了两倍
}
sort(sx+, sx+n+);
sort(sy+, sy+n+);
for(int i = ;i <= n;i++)
{
sum_x[i] = sum_x[i-] + sx[i];
sum_y[i] = sum_y[i-] + sy[i];
} ll ans = INF;
for(int i = ;i <= n;i++) //枚举每个点
{
ll px = lower_bound(sx+, sx+n+, x[i]) - sx; //如果之前记录下来,就可以O(1)
ll py = lower_bound(sy+, sy+n+, y[i]) - sy;
ll tmp = px*x[i] - sum_x[px] + sum_x[n] - sum_x[px] - (n-px)*x[i]; //相乘爆int
tmp += py*y[i] - sum_y[py] + sum_y[n] - sum_y[py] - (n-py)*y[i];
if(tmp < ans) ans = tmp;
}
printf("%lld\n", ans/);
}
}

参考链接:https://www.cnblogs.com/SGCollin/p/9636955.html

Hdu 4312-Meeting point-2——哈夫曼距离与切比雪夫距离的更多相关文章

  1. hdu 2527 Safe Or Unsafe (哈夫曼树)

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. HDU 4312 Meeting point-2(切比雪夫距离转曼哈顿距离)

    http://acm.hdu.edu.cn/showproblem.php?pid=4312 题意:在上一题的基础上,由四个方向改为了八个方向. 思路: 引用自http://blog.csdn.net ...

  3. HDU 4311 Meeting point-1 && HDU 4312 Meeting point-2

    这俩个题  题意::给出N(<1e5)个点求找到一个点作为聚会的地方,使每个点到达这里的距离最小.4311是 曼哈顿距离 4312是 切比雪夫距离: 曼哈顿距离 :大家都知道 对于二维坐标系a( ...

  4. HDU 4311 Meeting point-1 求一个点到其它点的曼哈顿距离之和

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4311 解题报告:在一个平面上有 n 个点,求一个点到其它的 n 个点的距离之和最小是多少. 首先不得不 ...

  5. Hdu 4312-Meeting point-2 切比雪夫距离,曼哈顿距离,前缀和

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=4312 Meeting point-2 Time Limit: 2000/1000 MS (Java/Ot ...

  6. Hdu OJ 5884-Sort (2016 ACM/ICPC Asia Regional Qingdao Online)(二分+优化哈夫曼)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5884 题目大意:有n个有序的序列,对于第i个序列有ai个元素. 现在有一个程序每次能够归并k个序列, ...

  7. HDU 1053 & HDU 2527 哈夫曼编码

    http://acm.hdu.edu.cn/showproblem.php?pid=1053 #include <iostream> #include <cstdio> #in ...

  8. 两个队列+k叉哈夫曼树 HDU 5884

    // 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...

  9. 随手练——HDU Safe Or Unsafe (小根堆解决哈夫曼问题)

    HDU 2527 :http://acm.hdu.edu.cn/showproblem.php?pid=2527 哈夫曼树,学完就忘得差不多了,题目的意思都没看懂,有时间复习下,看了别人的才知道是怎么 ...

随机推荐

  1. 2018ACM-ICPC亚洲区域赛南京站I题Magic Potion(网络流)

    http://codeforces.com/gym/101981/attachments 题意:有n个英雄,m个敌人,k瓶药剂,给出每个英雄可以消灭的敌人的编号.每个英雄只能消灭一个敌人,但每个英雄只 ...

  2. 图像处理库 Pillow与PIL

    PIL只支持python2的版本到2.7: Python imaging Library : Pillow 是PIL派生的一个分支,支持3以上Python版本. 命令使用pip安装: pip inst ...

  3. 【Leetcode】746. Min Cost Climbing Stairs

    题目地址: https://leetcode.com/problems/min-cost-climbing-stairs/description/ 解题思路: 官方给出的做法是倒着来,其实正着来也可以 ...

  4. Python+VSCode+Git【转】

    Python+VSCode+Git 学习总结 - 秦无邪 - 博客园

  5. FPS 游戏实现D3D透视

    FPS游戏可以说一直都比较热门,典型的代表有反恐精英,穿越火线,绝地求生等,基本上只要是FPS游戏都会有透视挂的存在,而透视挂还分为很多种类型,常见的有D3D透视,方框透视,还有一些比较高端的显卡透视 ...

  6. Nokia5130不能上网

    说明 我是一个挺怀旧的人,一直想入手一个好几年前买的Nokia5130. 于是昨天在淘宝上买了一个,花了我一百多.不过早就停产了,买到的自然是翻新机. 收到货的时候,看似一切美好,但是下载了个uc的j ...

  7. Consul作为SpringCloud配置中心

    一.背景介绍 在分布式系统中动态配置中,可以避免重复重启服务,动态更改服务参数等.一句话非常重要. 另外一篇文章也是这样说的,哈哈. Consul 作为Spring 推荐的分布式调度系统其也具备配置中 ...

  8. idea for mac 快捷键整理

    ⌘O 查找类文件 ⌘⌥O 前往指定的变量 / 方法 ⌘⇧O 查找所有类型文件.打开文件.打开目录,打开目录需要在输入的内容前面或后面加一个反斜杠/ ⌘⌥← / ⌘⌥→ 退回 / 前进到上一个操作的地方 ...

  9. sql server中:isnull(列名,0) 和isnull(列名,0)<>0 的区别

    1.isnull(参数1,参数2),判断参数1是否为NULL,如果是,返回参数2,否则返回参数1. 2.isnull(列名,0),isnull()函数是用来判断列名是否为null,如果为NUll,则返 ...

  10. Java之协程(quasar)

    一.前面我们简单的说了一下,Python中的协程原理.这里补充Java的协程实现过程.有需要可以查看python之协程. 二.Java协程,其实做Java这么久我也没有怎么听过Java协程的东西,但是 ...