题目链接

https://www.luogu.org/problem/P5564

题解

这题最重要的一步是读明白题。

为了方便起见下面设环长可以是\(1\), 最后统计答案时去掉即可。

实际上就相当于如果只有树没有环,答案就是卡特兰数第\((n-1)\)项。令\(C(x)\)为Catalan数生成函数,\(T(x)\)为这种树的生成函数,则\(T(x)=xC(x)\)。

然后环的话可以考虑Burnside引理,首先枚举环长,枚举置换,易得答案为\(\sum^n_{k=1}\frac{1}{k}\sum_{d|k,d|\gcd(a_i)}\phi(\frac{k}{d})[x^{\frac{nd}{k}}]T^d(x)\times \frac{(\frac{n}{d})!}{\prod^m_{i=1}(\frac{a_i}{d})!}=\sum_{d|\gcd(a_i)}\frac{\phi(d)(\frac{n}{d})!}{d\prod^m_{i=1}(\frac{a_i}{d})!}\sum^{\frac{n}{d}}_{k=1}[x^{\frac{n}{d}}]\frac{T^k(x)}{k}\)

然后有两种做法。

做法一

显然后面的\(\sum_{k=1}\frac{T^k}{k}=-\ln(1-T)\), 于是直接多项式\(\ln\)求出系数即可。

时间复杂度\(O(n\log n)\).

做法二

有没有优美一点的?

有一个非常神奇的结论: \([x^n]C^m(x)={2n+m-1\choose n}\frac{m}{n+m}\), 证明考虑卡特兰数的折线意义,当纵坐标首次变成\(-1\)时视为第二段拼接开始,可以把后面的都上移\(1\)位,再次变成\(-1\)时视为第三段开始,后面的都上移\(1\)位……直到最后,因此\(m\)段折线拼接的方案数就等于从\((0,0)\)走到\((2n+m-1,-m+1)\)的方案数。

于是\([x^n]T^m(x)={2n-m-1\choose n-m}\times\frac{m}{n}\), 带入原式可得\(\frac{1}{n}\sum_{d|\gcd(a_i)}\phi(d)\frac{(\frac{n}{d})!}{\prod(\frac{a_i}{d})!}\sum^{\frac{n}{d}}_{k=1}{\frac{2n}{d}-k-1\choose \frac{n}{d}-k}=\frac{1}{n}\sum_{d|\gcd(a_i)}\phi(d)\frac{(\frac{n}{d})!}{\prod(\frac{a_i}{d})!}{\frac{2n}{d}-1\choose \frac{n}{d}-1}\) (省略了很多中间步骤)

观察到我们只需要枚举\(\gcd(a_i)\)的约数,每个计算复杂度为\(O(m)\), 约数个数不超过\(\gcd(a_i)\le \min(a_i)\le \frac{n}{m}\), 故总复杂度为\(O(n)\).

orz myh&dcx

代码

做法二

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cassert>
#define llong long long
using namespace std; const int N = 4e5;
const int P = 998244353;
llong fact[N+3],finv[N+3];
int pri[N+3];
bool isp[N+3];
int phi[N+3];
int a[N+3];
int n,m,np; void EulerSieve()
{
isp[1] = true; phi[1] = 1;
for(int i=2; i<=N; i++)
{
if(isp[i]==false) {pri[++np] = i; phi[i] = i-1;}
for(int j=1; j<=np && i*pri[j]<=N; j++)
{
isp[i*pri[j]] = true;
if(i%pri[j]==0) {phi[i*pri[j]] = phi[i]*pri[j]; break;}
else {phi[i*pri[j]] = phi[i]*phi[pri[j]];}
}
}
} int gcd(int x,int y) {return y==0?x:gcd(y,x%y);} llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return finv[x]*fact[x-1]%P;}
llong comb(llong x,llong y) {return x<0||y<0||x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;} llong calc(llong x)
{
llong ret = fact[n/x];
for(int i=1; i<=m; i++) ret = ret*finv[a[i]/x]%P;
return ret;
} int main()
{
EulerSieve();
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d%d",&n,&m); int g = 0;
for(int i=1; i<=m; i++) scanf("%d",&a[i]),g = gcd(a[i],g);
llong ans = 0ll;
for(int i=1; i<=n; i++)
{
if(g%i==0)
{
llong tmp = phi[i]*calc(i)%P*comb(n*2/i-1,n/i-1)%P;
ans = (ans+tmp)%P;
}
}
ans = ans*mulinv(n)%P;
ans = (ans-comb(2*n-2,n-1)*mulinv(n)%P*calc(1)%P+P)%P;
printf("%lld\n",ans);
return 0;
}

Luogu P5564 [Celeste-B]Say Goodbye (多项式、FFT、Burnside引理、组合计数)的更多相关文章

  1. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  2. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  3. HDU4609 FFT+组合计数

    HDU4609 FFT+组合计数 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 找出n根木棍中取出三根木棍可以组成三角形的概率 题解: ...

  4. 【loj6538】烷基计数 加强版 加强版 Burnside引理+多项式牛顿迭代

    别问我为啥突然刷了道OI题,也别问我为啥花括号不换行了... 题目描述 求含 $n$ 个碳原子的本质不同的烷基数目模 $998244353$ 的结果.$1\le n\le 10^5$ . 题解 Bur ...

  5. BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)

    题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...

  6. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  7. Luogu P5469 [NOI2019]机器人 (DP、多项式)

    不用FFT的多项式(大雾) 题目链接: https://www.luogu.org/problemnew/show/P5469 (这题在洛谷都成绿题了海星) 题解: 首先我们考虑,一个序列位置最右边的 ...

  8. Codeforces 438E. The Child and Binary Tree 多项式,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/CF438E.html 前言 没做过多项式题,来一道入门题试试刀. 题解 设 $a_i$ 表示节点权值和为 $i$ 的二叉树个数, ...

  9. UOJ#424. 【集训队作业2018】count 多项式,FFT,矩阵

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ424.html 题解 主席太神仙了! 首先我们把题意转化成:对所有挺好序列建 笛卡尔树,有多少笛卡尔树互不 ...

随机推荐

  1. Eclipse连接数据库报错Local variable passwd defined in an enclosing scope must be final or effectively final

    其实原因很简单,就是翻译的结果 匿名内部类和局部内部类只能引用外部的fianl变量 把变量变成fianl就行了  第一次知道啊    记小本本.......

  2. 数据库数据导入/导出报错:无法在只读列“Id”中插入数据。

    本文仅供小白参考,大佬请随意...... 本例是:从vs 2017自带的localDB数据库的数据---导出到---->Sql Server 2008中的相应数据库中 1. 导出数据库: 2. ...

  3. 打印从1到最大的n位数(考虑大数问题)

    void Print1ToMaxOfNDigits(int n) { if(n <= 0) { return; } int * number = new int[n]; for(int i = ...

  4. Linux JDK升级

    一.jdk1.4卸载 Redhat Enterprise 5 中自带安装了jdk1.4,在安装jdk1.6前,把jdk1.4卸载: 1. 首先查看系统自带的JDK版本: [root@linux ~]# ...

  5. Java高并发程序设计学习笔记(八):NIO和AIO

    转自:https://blog.csdn.net/dataiyangu/article/details/87214773 什么是NIOBuffer && ChannelBuffer举个 ...

  6. Perl 认识简介

    Perl简介 Perl 是 Practical Extraction and Report Language 的缩写,可翻译为 "实用报表提取语言". Perl 是高级.通用.直译 ...

  7. 第一章·ELKstack介绍及Elasticsearch部署

    一.ELKstack课程大纲  二.ELKstack简介 什么是ELK? 通俗来讲,ELK是由Elasticsearch.Logstash.Kibana 三个开源软件的组成的一个组合体,这三个软件当 ...

  8. SQL语句复习【专题一】

    SQL语句复习[专题一] --创建用户 scott 并设置密码为 tiger create user scott identified by tiger --用户刚刚创建没有任何的权限,连登录的权限都 ...

  9. QQ空间添加背景音乐

    QQ空间背景音乐方式 1.QQ音乐添加背景音乐一种是开通绿砖[有矿的忽略此条]2.QQ空间添加网络音乐的方法步骤:1.首先,需要先下载好想要音乐作为QQ空间背景音乐的歌曲文件(建议为MP3格式)[我这 ...

  10. python 3.4.3 安装pygame

    之前一直都是用的python3.5,后来接触了pygame,又被python3.5的打包折磨的死去活来,后来干脆用python 3.4.3. 我之前安装轮子都是直接打开cmd,然后 pip3 inst ...