题目链接:戳我

【问题描述】

有n座山,m只猫和p个工作人员。山从左往右编号为1∼n,山i和i−1之间的距离是di米。

有一天,猫都到山上去玩了:第i只猫会到山hi去,并一直玩到时间ti,之后就在那座山等待工作人员来接它。

每个工作人员的线路都是从1走到n,并带走沿途任意只在等待的猫。工作人员速度为每单位时间1米,不能在山上停留。

例如,假设有两个山丘,d2=1,有一只猫要到山2去,在t=3结束它的玩耍。如果工作人员在时间2或时间3离开山1,则他可以带走这只猫,但如果在时间1离开山1,他就不能带走它。如果工作人员在时间2离开山1,则猫等待他0个时间单位,如果工作人员在时间3离开山1,则猫等待他1个时间单位。

你的任务是安排每个工作人员从1出发的时间(整数,可以是负数),使所有猫的等待时间总和最小。

【输入格式】

第一行三个整数n,m,p,表示山、猫、工作人员的数目。

第二行n−1个整数表示d2∼dn。

后面m行,每行两个数hi,ti。

【输出格式】

一个整数,表示所有猫的等待时间总和的最小值。

【数据规模】

40%的数据,m≤1000,p≤100。

80%的数据,m≤5000,p≤1000。

100%的数据,1≤m≤50000,1≤p≤1000。

对于所有数据,2≤n≤1e5,1≤di≤100,1≤hi≤n,0≤ti≤10e5。


斜率优化。

我们考虑每个猫的结束时间减去它的坐标,就相当于所有猫都在节点1,只是结束的时间不同了。

我们再把这个结束的时间排序一下,就可以设\(dp[i][j]\)表示前i只猫,被j个饲养员带走的最小代价了。

转移方程为:\(dp[i][j]=min{dp[i][j],dp[p][j-1]+node[i].num*(i-p)-(sum[i]-sum[p])}\)

其中\(sum[i]\)表示前i只猫的等待时间前缀和,\(node[i].num\)表示该猫等效于在1节点的开始等待时刻。

然后这个朴素DP是40分的。

现在考虑斜率优化:

把式子移项一下:

\(dp[i][j]+node[i].num*p=dp[p][j-1]+node[i].num*i-sum[i]+sum[p]\)

这就有了\(b+kx=y\)的形式

维护下凸壳即可。

下面这份代码被卡常了??只有90分嘤嘤嘤

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 100010
#define ll long long
using namespace std;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48); ch=getchar();}
return x*f;
}
ll n,m,p,tail,head;
ll d[MAXN],dis[MAXN],sum[MAXN],dp[50010][1010],q[MAXN];
struct Node{ll p,num;}node[MAXN];
inline double y(int i,int p){return dp[i][p]+sum[i];}
inline double k(int i,int j,int p)
{
if(i==j) return 1e9;
return (y(i,p-1)-y(j,p-1))/(i-j);
}
inline bool cmp(struct Node x,struct Node y){return x.num<y.num;}
int main()
{
n=read(),m=read(),p=read();
for(int i=2;i<=n;i++)
d[i]=read(),dis[i]=dis[i-1]+d[i];
for(int i=1;i<=m;i++)
{
int x;
node[i].p=read(),x=read();
node[i].num=x-dis[node[i].p];
}
sort(node+1,node+1+m,cmp);
for(int i=1;i<=m;i++) sum[i]=sum[i-1]+node[i].num;
memset(dp,0x3f,sizeof(dp));
dp[0][0]=0;
for(int j=1;j<=p;j++)
{
tail=head=0;
for(int i=1;i<=m;i++)
{
while(head<tail&&node[i].num>k(q[head],q[head+1],j)) head++;
dp[i][j]=dp[q[head]][j-1]+node[i].num*i-node[i].num*q[head]-sum[i]+sum[q[head]];
while(head<tail&&k(q[tail-1],q[tail],j)>k(q[tail],i,j)) tail--;
q[++tail]=i;
}
}
printf("%lld\n",dp[m][p]);
return 0;
}

noi.ac #534 猫的更多相关文章

  1. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  2. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  3. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  4. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  5. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  6. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  7. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  8. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  9. NOI.AC WC模拟赛

    4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...

随机推荐

  1. 简易计算器-leetcode

    今天,开始在leetcode上面开始做题,第一个题目是: Implement a basic calculator to evaluate a simple expression string. Th ...

  2. B2B、B2C、C2C、O2O分别是什么意思?

    1.B2B 是指进行电子商务交易的供需双方都是商家(或企业.公司),她(他)们使用了互联网的技术或各种商务网络平台,完成商务交易的过程.电子商务是现代 B2B marketing的一种具体主要的表现形 ...

  3. python安装OpenCV后import cv2报错解决办法

    现在python安装完成后,运行pip install opencv-python安装成功后,import cv2时会失败 看到有人给出下载https://www.lfd.uci.edu/~gohlk ...

  4. 作业8:常用java命令(二)

    一.jinfo(Configuration Info for Java) 1.功能:jinfo可以实时地查看和调整虚拟机的各项参数. 2.参数: 选项 作用 -flag name 打印改名字的VM设置 ...

  5. 作业6:Java虚拟机类加载机制

    一.概述 1.定义 虚拟机类加载机制:把类的数据从Class文件加载进内存,并对数据作校验.转换解析和初始化,最终形成可被JVM直接使用的Java类型. 2.与C/C++的不同 Java不在编译时进行 ...

  6. CentOS7 yum安装Mariadb

    1.安装Mariadb #yum -y install mariadb mariadb-server 1.1当执行程序末端显示Complete则完成安装 2.安装完成后启动服务 # systemctl ...

  7. 将java文件编译成class文件

    一般情况下,在myeclipse中保存java文件后会自动编译成class文件,但是这种情况只能编译当前工程的java文件,但是如果需要编译不是一个工程的java文件,比如在网上拷贝的java文件改如 ...

  8. JS 中的跨域请求

    跨域请求并不仅仅只是 Ajax 的跨域请求,而是对于一个页面来说,只要它请求了其他域名的资源了,那么这个过程就属于跨域请求了. 比如,一个带有其他域名的 src 的 <img> 标签,以及 ...

  9. Vue异步请求最佳实践

    一.当前存在的问题 目前项目前端请求后台数据的方式是这样的: 页面中method中dispatch到action action调用mutation,请求axios 请求到数据后存储到state中 页面 ...

  10. JavaScript事件的基本学习