题意

给你一个长度为 \(n\) 的整数序列 \(a_1, a_2, \ldots, a_n\),你需要实现以下两种操作,每个操作都可以用四个整数 \(opt\ l\ r\ v\) 来表示:

  • \(opt=1\) 时,代表把一个区间 \([l, r]\) 内的所有数都 \(xor\) 上 \(v\)。

  • \(opt=2\) 时, 查询一个区间 \([l, r]\) 内选任意个数(包括 \(0\) 个)数 \(xor\) 起来,这个值与 \(v\) 的最大 \(xor\) 和是多少。

分析

线段树维护下线性基就行了,区间修改的时候记录下线段树每个结点的修改量\(k​\),合并的时候再加进线性基

因为线性基是构造出的一组极大线性无关组,所以查询\((a_i~xor~k)(i∈[l,r])\)组成的线性基等价于查询\(k∪a_i(i∈[l,r])​\)

Code

#include<bits/stdc++.h>
#define fi first
#define se second
#define bug cout<<"--------------"<<endl
using namespace std;
typedef long long ll;
const double PI=acos(-1.0);
const double eps=1e-6;
const int inf=1e9;
const ll llf=1e18;
const int mod=1e9+7;
const int maxn=5e4+10;
struct ji{
int p[33],k;
void clear(){
memset(p,0,sizeof(p));
}
void insert(int x){
for(int i=30;i>=0;i--){
if(!((x>>i)&1)) continue;
if(p[i]) x^=p[i];
else{
p[i]=x;
break;
}
}
}
int qy(int x){
int ret=x;
for(int i=30;i>=0;i--) ret=max(ret^p[i],ret);
return ret;
}
};
int n,m;
int a[maxn],b[maxn],f[maxn],tag[maxn<<2];
ji tr[maxn<<2];
ji mer(ji a,ji b){
ji ret=a;
for(int i=30;i>=0;i--) if(b.p[i]) ret.insert(b.p[i]);
ret.insert(ret.k^b.k);
return ret;
}
void pushup(int p){
tr[p]=mer(tr[p<<1],tr[p<<1|1]);
}
void tag1(int p,int x){
tr[p].k^=x;
tag[p]^=x;
}
void pushdown(int p){
tag1(p<<1,tag[p]);
tag1(p<<1|1,tag[p]);
tag[p]=0;
}
void build(int l,int r,int p){
if(l==r){
scanf("%d",&tr[p].k);
return;
}
int mid=l+r>>1;
build(l,mid,p<<1);
build(mid+1,r,p<<1|1);
pushup(p);
}
void up(int dl,int dr,int l,int r,int p,int x){
if(l>=dl&&r<=dr){
tr[p].k^=x;
tag[p]^=x;
return;
}
pushdown(p);
int mid=l+r>>1;
if(dl<=mid) up(dl,dr,l,mid,p<<1,x);
if(dr>mid) up(dl,dr,mid+1,r,p<<1|1,x);
pushup(p);
}
ji ans;
void qy(int dl,int dr,int l,int r,int p){
if(l>=dl&&r<=dr){
ans=mer(ans,tr[p]);
return;
}
pushdown(p);
int mid=l+r>>1;
if(dl<=mid) qy(dl,dr,l,mid,p<<1);
if(dr>mid) qy(dl,dr,mid+1,r,p<<1|1);
}
int main(){
scanf("%d%d",&n,&m);
build(1,n,1);
while(m--){
int op,l,r,v;
scanf("%d%d%d%d",&op,&l,&r,&v);
if(op==1){
up(l,r,1,n,1,v);
}else{
ans.clear();
qy(l,r,1,n,1);
printf("%d\n",ans.qy(v));
}
}
return 0;
}

Comet OJ - Contest #3 D 可爱的菜菜子 线段树+线性基的更多相关文章

  1. Comet OJ - Contest #3 D可爱的菜菜子(线段树+线性基的合并)

    这题其实挺经典的,看到求异或最大,显然想到的是线性基,不过这怎么维护?当然区间有关的东西都可以上线段树,区间修改时记录每个点的修改量k,然后合并线性基时再加入线性基.因为线性基是求一组极大线性无关组, ...

  2. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  3. Comet OJ - Contest #11 题解&赛后总结

    Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...

  4. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  5. Comet OJ - Contest #4--前缀和

    原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...

  6. Comet OJ - Contest #8

    Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...

  7. Comet OJ - Contest #13-C2

    Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...

  8. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

  9. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

随机推荐

  1. windows上pip安装及使用详解

    windows上pip安装及使用详解 2018-11-21 19:49:58 十二笔 阅读数 8229更多 分类专栏: Python学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA ...

  2. 【原创】大叔经验分享(66)docker启动tomcat不输出catalina.out

    docker启动tomcat默认是: Run the default Tomcat server (CMD ["catalina.sh", "run"]): 查 ...

  3. JS基础_if练习二

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  4. Java list的实现类

    Java list的实现类 本文是根据博文整理 Java中,List接口一共有三个实现类:ArrayList.Vector和LinkedList. 其中ArrayList和Vector都是利用数组这一 ...

  5. 深入探讨java的类加载器

    类加载器是 Java 语言的一个创新,也是 Java 语言流行的重要原因之一.它使得 Java 类可以被动态加载到 Java 虚拟机中并执行.类加载器从 JDK 1.0 就出现了,最初是为了满足 Ja ...

  6. nested exception is org.apache.ibatis.binding.BindingException

    mybatis出错 xml文件: <update id="decreaseStock"> update item_stock set stock = stock - # ...

  7. shiro权限控制配置

    shiro配置流程 web.xml中配置shiro的filter spring中配置shiro的过滤器工厂,指定对不同地址权限控制 , 传入安全管理器 配置安全管理器,传入realm,realm中定义 ...

  8. MYSQL 增加语句(数据)

    增加数据     如果你失忆了,希望你能想起曾经为了追求梦想的你.     前一节我们学习了查询语句 SELECT,这节课,我们学习增加 INSERT INTO ****  VALUES ****,基 ...

  9. ASP.NET中TextBox控件设立ReadOnly="true"后台取不到值

    SP.NET中TextBox控件设置ReadOnly="true"H或Enabled=false后台取不到值 当TextBox设置了ReadOnly="true" ...

  10. idea 党用快捷键

    实用快捷键: Ctrl+/ 或 Ctrl+Shift+/ 注释(// 或者/*...*/ )Ctrl+D 复制行Ctrl+X 删除行快速修复 alt+enter (modify/cast)代码提示 a ...