title: 【概率论】5-4:泊松分布(The Poisson Distribution)

categories:

- Mathematic

- Probability

keywords:

- Poisson Distribution

- Poisson Processes

toc: true

date: 2018-03-28 15:40:55



Abstract: 本文介绍Poisson分布相关知识

Keywords: Poisson Distribution

开篇废话

前面这几个分布包括今天说的泊松分布都是和二项分布,伯努利分布相互联系的,之间有各种各样的关系,我们的学习目的不是背诵所有这些分布的性质,而是在这些性质的推到过程。

很多实验比较关注次数,比如一段时间内到达商店的顾客的人数,电话交换机每分钟受到的通话请求,洪水或者其他自然人为灾害发生的次数。泊松分布被用来建模,一段事件这些事情发生的次数,并且泊松分布也是用来近似当 ppp 很小的时候的二项分布的一种方法。

Definition and Properties of the Poisson Distributions

先来看一个商店一段时间有多少顾客到来的例子,这个例子会贯穿正片博客,大家应该好好读一下。


商店老板相信,顾客们以每个小时4.5 人次的数量来到商店,他想找到一个X的分布,这个X表示在未来某个一个小时,到店的客人数,并且他认为这些到来的客人之间相互独立,于是他的做法是按照一个小时3600秒计算,平均每秒来 0.00125 个人,并且假设一秒钟不会同时出现两个人同时到店的可能,那么某时间点,到达的人数为0或者1,为1的可能性是0.00125,整个过程是一个二项分布,n=3600,p=0.00125。

这看起来很正确也很流畅

于是他要计算p.f.了:

f(x∣n=3600,p=0.00125)={(3600x)px(1−p)3600−xfor 0≤x≤36000otherwise
f(x|n=3600,p=0.00125)=
\begin{cases}
\begin{pmatrix}
3600\\x
\end{pmatrix}p^x(1-p)^{3600-x}&\text{for }0\leq x\leq 3600\\
0&\text{otherwise}
\end{cases}
f(x∣n=3600,p=0.00125)=⎩⎨⎧​(3600x​)px(1−p)3600−x0​for 0≤x≤3600otherwise​

这个式子非常有意思,当参数 (3600x)\begin{pmatrix} 360 0\\x \end{pmatrix}(3600x​) 变大的时候, 参数 px(1−p)3600−xp^x(1-p)^{3600-x}px(1−p)3600−x 似乎以同等的速度变小,而整体却变化不大,于是我们对相邻的两个随机变量值做个比较(以下把 XXX 扩展到在0到 nnn 之间变化)

f(x+1)f(x)=(nx+1)px+1(1−p)n−x−1(nx)px+1(1−p)n−x−1=(n−x)p(x+1)(1−p)≈npx+1
\begin{aligned}
\frac{f(x+1)}{f(x)}&=
\frac
{\begin{pmatrix}n\\x+1\end{pmatrix}p^{x+1}(1-p)^{n-x-1}}
{\begin{pmatrix}n\\x\end{pmatrix}p^{x+1}(1-p)^{n-x-1}}\\
&=\frac{(n-x)p}{(x+1)(1-p)}\\
&\approx\frac{np}{x+1}
\end{aligned}
f(x)f(x+1)​​=(nx​)px+1(1−p)n−x−1(nx+1​)px+1(1−p)n−x−1​=(x+1)(1−p)(n−x)p​≈x+1np​​

本文节选自原文地址1:https://www.face2ai.com/Math-Probability-5-4-The-Poisson-Distribution转载请标明出处

【概率论】5-4:泊松分布(The Poisson Distribution)的更多相关文章

  1. Poisson distribution 泊松分布 指数分布

    Poisson distribution - Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution Jupyter Notebook ...

  2. [转]Poisson Distribution

    Poisson Distribution Given a Poisson process, the probability of obtaining exactly successes in tria ...

  3. 【概率论】5-1:分布介绍(Special Distribution Introduction)

    title: [概率论]5-1:分布介绍(Special Distribution Introduction) categories: - Mathematic - Probability keywo ...

  4. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  5. 【概率论】5-3:超几何分布(The Hypergeomtric Distribution)

    title: [概率论]5-3:超几何分布(The Hypergeomtric Distribution) categories: - Mathematic - Probability keyword ...

  6. 【概率论】3-3:累积分布函数(Cumulative Distribution Function)

    title: [概率论]3-3:累积分布函数(Cumulative Distribution Function) categories: Mathematic Probability keywords ...

  7. Poisson Distribution——泊松分布

    老师留个小作业,用EXCEL做不同lambda(np)的泊松分布图,这里分别用EXCEL,Python,MATLAB和R简单画一下. 1. EXCEL 运用EXCEL统计学公式,POISSON,算出各 ...

  8. 概率论中常见分布总结以及python的scipy库使用:两点分布、二项分布、几何分布、泊松分布、均匀分布、指数分布、正态分布

    概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布. 离散概率分布也称为概率质量函数(probability mass function).离散概率分布的例子有 ...

  9. 常见的概率分布类型(二)(Probability Distribution II)

    以下是几种常见的离散型概率分布和连续型概率分布类型: 伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1. 伯努利试验是单次随机试验,只有&qu ...

随机推荐

  1. PowerBuilder学习笔记之导入Excel数据

    原文地址:http://blog.chinaunix.net/uid-20586802-id-3235549.html /*****************简单的导入功能,涉及到数据类型判断***** ...

  2. Spring AOP日志实现(四)--Bean的设计

    日志Bean的设计: 类名及方法名:

  3. babel tsc webpack

    我要用啥?js的话:babel编译+webpack模块打包ts的话:tsc编译成js+babel编译+webpack模块打包浏览器情况:如果您的浏览器支持es6所有语法那么就可以只用webpack来处 ...

  4. javascript进度条实现

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  5. Go net/http 发送常见的 http 请求

    使用 golang 中的 net/http 包来发送和接收 http 请求 开启 web server 先实现一个简单的 http server,用来接收请求 package main import ...

  6. JS中浏览器的数据存储机制

    一.JS中的三种数据存储方式 cookie.sessionStorage.localStorage 二.cookie 1.cookie的定义: cookie是存储在浏览器上的一小段数据,用来记录某些当 ...

  7. MM-自制件改外购件

    自制件改外购件 https://wenku.baidu.com/view/fbb182c6bb4cf7ec4afed081.html

  8. S5PV210 启动流程

    S3C6410启动流程 首先,看一下S3C6410启动流程 ① iROM supports initial boot up : initialize system clock, D-TCM, devi ...

  9. echarts的一点记录

    echart官网地址: https://www.echartsjs.com/index.html echarts实例地址:https://echarts.baidu.com/examples/ vue ...

  10. RocketMQ问题

    RocketMQ原理(4)——消息ACK机制及消费进度管理 RocketMQ消费者,设置setConsumeFromWhere无效的问题 MQ的CONSUME_FROM_LAST_OFFSET未生效 ...