---恢复内容开始---

  在看数据结构的串的讲解的时候,讲到了KMP算法——一个经典的字符串匹配的算法,具体背景自行百度之,是一个很牛的图灵奖得主和他的学生提出的。

  一开始看算法的时候很困惑,但是算法思想很简单,就是在暴力匹配的基础上得出的。

暴力匹配

  这里有必要说一下暴力匹配,暴力匹配更简单,就是按照人的常规思维去匹配字符串,拿模式串(P)的第一个字符去和给定串(S)比较,S从左往右看,一看,第一个,呀~不对,啥也不说了,第一个都不对了,后边还比个毛。所以,这一次比较,S中第一个字符开头是匹配串就不可能了。然后就拿P的第一个字符,去和S中第二个字符开头的比较,一看,对上了,有希望,再往后看,全对上了,恭喜你,程序结束了,没对上,也不要气馁,开始看S的第三个字符开头的字符串……如此一遍遍重复,直到找到匹配串。

  上述算法暴力,简单,但复杂度高,O(n2)的,一次就找到算你幸运,但是,形如“0000000001”的串S和形如“000001”的匹配起来就麻烦了,每次移动一个,看到P串的最后一个才发现不行,直到P串移动到最后。

KMP

  那么KMP就解决了这个问题,他让P串不是简单地往后移动一个了,而是移动k个,因为,我们每次比较时,前若干字符在上一次比较中的情况已经知道了,所以我们在下一次比较时,可以利用上一次比较的结果,不用再去做无用功了。

  那么关键来了,他为什么可以移动k个呀,你怎么保证你在移动k个的时候(略过了移动0~k个),没有把正确答案错过?思前想后,个人觉得,归根结底还是根据模式串P的前缀和后缀的重复性决定的。

  这里有两个问题要解释

  (1)前缀和后缀

  举个栗子,字符串“ababa” 的所有前缀为“a”、“ab”、“aba”、“abab”,就是以第一个字符开头,不包含最后一个字符的所有子串。同理,所有后缀就是“a”、“ba”、“aba”、“baba”,就是以最后一个字符结尾,不包含第一个字符的所有子串。

  (2)重复性

  关键来了,我觉得这是能使P向后移动k个而不是1个的基础。

  

  以上图所示的匹配为栗子,目前已经匹配了“ababa”(后边的先不看),再往后匹配就失败了,此时我要移动P串,KMP就不是移动一个了,而是移动k个,那么怎么决定k的大小呢,很显然,已经匹配的串的后缀和前缀是有一定重复的,这样利用重复的信息,在向后移动的时候,我们才能把前面一部分直接拿来用。

  就像手绘的这张图一样,整个矩形我们目前已经匹配上了,1部分和2部分是重复的,那么我们就可以向后移动k个,即1和2重合,毫无疑问,移动后,1部分是已经匹配好的,无需再检测匹配了。

  所以,我们需要找,前缀和后缀最长的公共部分的长度。很显然,公共部分越长,k就越小,说明当前越接近匹配串。为了后边便于操作,我们在预处理中,遍历得到模式串P的所有子串的最大公共部分长度,构成部分匹配表(next表),在后边匹配的时候,直接查表就可以得到下一次前进的k值。

  例如在上述讲前缀后缀时的栗子,前缀和后缀最长公共部分是“aba”,因此,表中对应的值就是3。

  当然,前进的k=已经匹配的字符串长度-该串对应的匹配表的值;(k>1时才有意义)

  

  行了,我理解的KMP算法已经讲完了,最后举个栗子验证一下

  用别人的一张图吧,应该没事吧~~~

  这是上边所说的部分匹配表,具体怎么得到的上边已经讲了。模式串P是“abababca”,待查找的串S为“bacbababaabcbab”。

  1. p的第一个和S的第一个不匹配,后移,此时那个公式没用,直接向后移动一个。
  2. P[0]和S[1]匹配上了,但是P[1]和S[2]不匹配,a对应的值为0,公式没用,直接向后移动一个。
  3. 然后跟c和b比较都不行,也是每次移动一个
  4. 再往后比较时,P中“ababa”和S中“ababa”匹配成功,再往后,P中是“b”,而S中是“a”,不匹配,此时查“ababa”对应的值是3,“ababa”长度是5,那么向后移动2个,继续比较

  如图,画线部分,移动之后依然对其,就不用再比较了。

  剩下的工作类似,知道找到匹配串或者匹配失败。

  如下是简单的KMP实现代码

 #include<stdio.h>
#include<string.h>
//定义next数组中的元素
typedef struct Next
{
int value;
char ch;
int num;
} Next;
Next next[];
int kmp(char *s,char *p)
{
int len1 = strlen(s); //S串
int len2 = strlen(p); //模式串
int i=,j=;
int pos=i; //记录每次S中开始比较的位置
int succ=;
while(len1-pos>=len2)
{ i=pos;
while(s[i]==p[j]&&j<len2)
{
++i;
++j;
}
if(j==len2)
{
succ=;
break;
}
if(next[j-].value<)
{
j=;
++pos;
continue;
}
pos=pos+j-next[j-].value; //S串中跳动的位置
j=; //每次模式串从头比较,其实不用。。。
}
if(succ==)
return i-len2;
else
return -;
}
void getNext(char *p)
{
int len;
int k;
char pre[],suf[];
int flag=;
for(int i=; i<strlen(p); ++i)
{
len=i+;
k=len-;
flag=;
next[i].ch=p[i];
next[i].num=i;
//从可能的最大的k开始寻找
while(k!=)
{
for(int j=; j<k; ++j)
{
pre[j]=p[j];
suf[j]=p[len-k+j];
pre[j+]='\0';
suf[j+]='\0';
}
if(strcmp(pre,suf)==)
{
flag=;
break;
}
else
--k;
}
if(flag==)
next[i].value=k;
else
next[i].value=;
}
}
int main()
{
char s[],p[];
gets(s);
gets(p);
getNext(p);
int re = kmp(s,p);
if(re==-)
printf("Fail\n",re);
else
printf("The substring is from %d to %d\n",re,re+strlen(p)-);
return ;
}

  

KMP算法的理解的更多相关文章

  1. 自己对kmp算法的理解,借由 28. 实现 strStr() 为例

    做题思路 or 感想 : 就借由这道题来理解一下kmp算法吧 kmp算法的操作过程我觉得有句话很合适 :KMP 算法永不回退 目标字符串 的指针 i,不走回头路(不会重复扫描 目标字符串),而是借助 ...

  2. KMP算法 --- 深入理解next数组

    在KMP算法中有个数组,叫做前缀数组,也有的叫next数组. 每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符. 当然它描述的也是子串的对称程度,程度越高,值 ...

  3. 关于《数据结构》课本KMP算法的理解

    数据结构课上讲的KMP算法和我在ACM中学习的KMP算法是有区别的,这里我对课本上的KMP算法给出我的一些想法. 原理和之前的KMP是一样的https://www.cnblogs.com/wkfvaw ...

  4. 关于KMP算法的理解

    上次因为haipz组织的比赛中有道题必须用到KMP算法,因此赛后便了解了下它,在仔细拜读了孤~影神牛的文章之后有种茅塞顿开的感觉,再次ORZ. 附上链接http://www.cnblogs.com/y ...

  5. 我对KMP算法的理解

    KMP算法的核心在于失配回溯表——pnext,相比于通过逐个比较来匹配字符串的朴素算法,KMP通过对模式串的分析,可以做到比较指针在主串上不回溯,一直向前. 1. KMP如何实现不回溯? 对于主串 t ...

  6. KMP算法自我理解 和 模板

    字符串   abcd abc abcd abc 匹配串   cdabcd 匹配串的 next  0 0 0 0 1 2: 开始匹配 abcd abc abcd abc cd abc d a,d 匹配失 ...

  7. 第十一章 串 (c3)KMP算法:理解next[]表

  8. kmp算法初步理解

    123456789 abbdaxnds Next   01212 第三位看第二位b,第二位和第三位相同,都是b,所以第三位的next是第二位的next加1,即1+1=2 第四位看第三位b,第四位d与第 ...

  9. KMP算法中next函数的理解

    首先要感谢http://blog.csdn.net/v_july_v/article/details/7041827以及http://blog.chinaunix.net/uid-27164517-i ...

随机推荐

  1. FormsAuthentication与Session超时时间不一的解决方法

    因为FormsAuthentication 和 Session 的cookies不一样,造成了FormsAuthentication 还能进入,而 session已经超时的问题. 最好的办法就是当让F ...

  2. 【Mood-8】IT男!五更天!

    男人从毕业到30岁之间所承受的叠加的压力,赡养父母.结婚生子.升职加薪.工作压力.生活质量,这些东西可以压得我们喘不过起来,也成为我们成长的动力, 我们累,但不说累,我们闷着头做事儿,不张扬,但每个都 ...

  3. windws 安装jdk

    (1) 到官网下载好jdk:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html (2 ...

  4. C#备份,还原数据库

    private void btnBack_Click(object sender, EventArgs e) { string saveAway = @"C:\1.bak"; // ...

  5. JVM 运行时内存结构

      1.JVM内存模型       JVM运行时内存=共享内存区+线程内存区 1).共享内存区       共享内存区=持久带+堆       持久带=方法区+其他       堆=Old Space ...

  6. ubuntu系统下安装gstreamer的ffmpeg支持

    当您在安装gstreamer到您的ubuntu系统中时,为了更好地进行流媒体开发,需要安装ffmpeg支持,但一般情况下,直接使用 sudo apt-get install gstreamer0.10 ...

  7. ORACLE中大数据量查询实现优化

    大数据量查询,对数据库开发者来说,性能问题往往是最需要费尽心机的,借此总结自己优化此类问题的心得与大家分享,以免大家走更多的弯路. 1.使用主键临时表 大数据量表关联查询,是性能开销的主要原因.通过主 ...

  8. C++之算法题模板

    main.cpp: #include <iostream>#include <vector>#include <cstring>#include <cstdi ...

  9. w3cschool关于list-style-position时的另外发现

    首先list-style-position有inside和outside... 另外发现:设置inline-block时 那个圆点消失了.. <!DOCTYPE html> <htm ...

  10. OGG

    Oracle Golden Gate软件是一种基于日志的结构化数据复制备份软件,它通过解析源数据库在线日志或归档日志获得数据的增量变化,再将这些变化应用到目标数据库,从而实现源数据库与目标数据库同步. ...