题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738

给一张无向图,每一条边都有权值。找一条割边,使得删掉这条边双连通分量数量增加,求权值最小那条。

注意有重边,ACEveryDay里群巨给的意见是tarjan的时候记录当前点是从哪条边来的。

注意假如桥的权值是0的时候也得有一个人去炸……

在找割边的时候,假如用点做线索,比如a到b有两条无向边。

现在是有重边的情况,假如现在从a点到b点,根据线索,我们认为a是b的父亲了,那我们从b点再回去的边就一定是走不了了。这样的情况下,假如low(b)> dfn(a),那我们的算法会认为a和b之间存在一条割边。这显然是不正确的,我们应当有一个合理的方法来解决这个问题。

我们改用边来做线索,还是刚才的假设。从a到b,我们记下这条无向边,那么b就无法再从这条无向边回到a点了。但是b仍然可以从另外一条(也就是重边)回到a点,其实是把a这个“父亲”的特别属性给去掉,无论如何只要b有一条边能向后走,都认为是返祖边。b回到a的时候必然会更新当前的low(b),所以最终low(b)=dfn(a),也就可以判断出ab之间的边并不是割边了。

其实对比这两个算法的实现,我们可以知道:通过割边可以得到割点,但是通过割点未必知道割边。

 /*
━━━━━┒ギリギリ♂ eye!
┓┏┓┏┓┃キリキリ♂ mind!
┛┗┛┗┛┃\○/
┓┏┓┏┓┃ /
┛┗┛┗┛┃ノ)
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┃┃┃┃┃┃
┻┻┻┻┻┻
*/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
#define fr first
#define sc second
#define cl clear
#define BUG puts("here!!!")
#define W(a) while(a--)
#define pb(a) push_back(a)
#define Rint(a) scanf("%d", &a)
#define Rll(a) scanf("%lld", &a)
#define Rs(a) scanf("%s", a)
#define Cin(a) cin >> a
#define FRead() freopen("in", "r", stdin)
#define FWrite() freopen("out", "w", stdout)
#define Rep(i, len) for(int i = 0; i < (len); i++)
#define For(i, a, len) for(int i = (a); i < (len); i++)
#define Cls(a) memset((a), 0, sizeof(a))
#define Clr(a, x) memset((a), (x), sizeof(a))
#define Full(a) memset((a), 0x7f7f, sizeof(a))
#define lp p << 1
#define rp p << 1 | 1
#define pi 3.14159265359
#define RT return
#define lowbit(x) x & (-x)
#define onenum(x) __builtin_popcount(x)
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
typedef pair<string, int> psi;
typedef map<string, int> msi;
typedef vector<int> vi;
typedef vector<LL> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb; typedef struct Edge {
int u, v, w;
int idx, next;
bool cut;
Edge() {}
Edge(int uu, int vv, int ww, int ii) : u(uu), v(vv), w(ww), idx(ii) {}
}Edge;
const int maxn = ;
const int maxm = maxn*maxn;
int n, m;
int bridge;
Edge edge[maxm];
int head[maxn];
int dfn[maxn], low[maxn];
int ecnt;
int ret; void adde(int u, int v, int w, int i) {
edge[ecnt] = Edge(u, v, w, i);
edge[ecnt].next = head[u];
edge[ecnt].cut = ;
head[u] = ecnt++;
} void dfs(int u, int d, int p) {
low[u] = dfn[u] = d;
for(int i = head[u]; ~i; i=edge[i].next) {
int v = edge[i].v;
int idx = edge[i].idx;
if(p == idx) continue;
if(!dfn[v]) {
dfs(v, d+, idx);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u]) {
bridge++;
edge[i].cut = edge[i^].cut = ;
ret = min(ret, edge[i].w);
}
}
else low[u] = min(low[u], dfn[v]);
}
} int main() {
// FRead();
int u, v, w;
while(~Rint(n) && ~Rint(m) && n + m) {
Clr(head, -); Cls(dfn); Cls(low);
ecnt = ; bridge = ; ret = 0x7f7f7f;
For(i, , m+) {
Rint(u); Rint(v); Rint(w);
adde(u, v, w, i); adde(v, u, w, i);
}
int cnt = ;
For(i, , n+) {
if(!dfn[i]) {
cnt++;
dfs(i, , );
}
}
if(ret == ) ret = ;
if(ret == 0x7f7f7f) ret = -;
if(cnt > ) ret = ;
printf("%d\n", ret);
}
RT ;
}

[HDOJ4738]Caocao's Bridges(双联通分量,割边,tarjan)的更多相关文章

  1. POJ 3177 Redundant Paths 双联通分量 割边

    http://poj.org/problem?id=3177 这个妹妹我大概也曾见过的~~~我似乎还没写过双联通分量的blog,真是智障. 最少需要添多少条边才能使这个图没有割边. 边双缩点后图变成一 ...

  2. HDU-4738 Caocao's Bridges 边联通分量

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 题意:在有重边的无向图中,求权值最小的桥. 注意trick就好了,ans为0时输出1,总要有一个 ...

  3. HDU4738 Caocao's Bridges —— 边双联通分量 + 重边

    题目链接:https://vjudge.net/problem/HDU-4738 A network administrator manages a large network. The networ ...

  4. Tarjan 强连通分量 及 双联通分量(求割点,割边)

    Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) ...

  5. 【UVA10972】RevolC FaeLoN (求边双联通分量)

    题意: 给你一个无向图,要求把所有无向边改成有向边,并且添加最少的有向边,使得新的有向图强联通. 分析: 这题的解法还是很好想的.先用边双联通分量缩点,然后找新图中入度为0和为1的点,入度为0则ans ...

  6. poj2942(双联通分量,交叉染色判二分图)

    题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. 思路:首先 ...

  7. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  8. 图连通性【tarjan点双连通分量、边双联通分量】【无向图】

    根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low ...

  9. [J]computer network tarjan边双联通分量+树的直径

    https://odzkskevi.qnssl.com/b660f16d70db1969261cd8b11235ec99?v=1537580031 [2012-2013 ACM Central Reg ...

  10. POJ3694 Network —— 边双联通分量 + 缩点 + LCA + 并查集

    题目链接:https://vjudge.net/problem/POJ-3694 A network administrator manages a large network. The networ ...

随机推荐

  1. ASP.NET MVC NonActionAttribute使用说明

    默认情况下,MVC 框架将 controller 类的所有公共方法都视为操作方法. 如果您的 controller 类包含公共方法,并且您不希望它成为操作方法,则必须用 NonActionAttrib ...

  2. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  3. android开发,assets下面的资源文件不会变化/改动

    我再调试asserts下面的资源文件,发现我改动assets下面的文件内容,在真机上测试的时候还是最原先的内容,没有变,后来,卸载,重装就ok了. 原因: assets下面的资源文件,若覆盖重装,则里 ...

  4. NYOJ-456 邮票分你一半 AC 分类: NYOJ 2014-01-02 14:33 152人阅读 评论(0) 收藏

    #include<stdio.h> #define max(x,y) x>y?x:y int main(){ int n,x,y; scanf("%d",& ...

  5. 转:[gevent源码分析] 深度分析gevent运行流程

    [gevent源码分析] 深度分析gevent运行流程 http://blog.csdn.net/yueguanghaidao/article/details/24281751 一直对gevent运行 ...

  6. 【redis】05Redis的常用命令及高级应用

    Redis常用命令     Redis提供了非常丰富的命令,对数据库和个中数据类型进行操作, 这些命令呢,可以在Linux终端使用. 分为两大类的命令,一种是键值相关的命令,一种是服务器相关的命令, ...

  7. Chp17: Moderate

    17.1 swap a number in place.(without temporary variables) a = a ^ b; b = a ^ b; a = a ^ b; 17.3 Writ ...

  8. unity3d GameObject.Find 严格区分大小写的

    GameObject.Find 查找 static function Find (name : string) : GameObject Description描述 Finds a game obje ...

  9. c# 在windows服务中 使用定时器

    由于最近做自动执行的程序,开始做windows服务程序, 在windows服务中如何使用定时器的时候一直失效, 以前是直接拖入timer控件,但是不能直接运行,后来在网上找了一段程序,好使了. //开 ...

  10. lintcode:next permutation下一个排列

    题目 下一个排列 给定一个整数数组来表示排列,找出其之后的一个排列. 样例 给出排列[1,3,2,3],其下一个排列是[1,3,3,2] 给出排列[4,3,2,1],其下一个排列是[1,2,3,4] ...