[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10
(1). The numerical radius defines a norm on $\scrL(\scrH)$.
(2). $w(UAU^*)=w(A)$ for all $U\in \U(n)$.
(3). $w(A)\leq \sen{A}\leq 2w(A)$ for all $A$.
(4). $w(A)=\sen{A}$ if (but not only if) $A$ is normal.
Solution.
(1). We only need to show that $$\beex \bea w(A)=0&\ra \sef{x,Ax}=0,\quad \forall\ x:\sen{x}=1\\ &\ra \sef{y,Ax}=\frac{1}{4} \sum_{k=0}^3 i^k\sef{x+i^ky,A(x+i^ky)}=0,\quad\forall\ x,y:\sen{x}=\sen{y}=1\\ &\ra Ax=0,\quad \forall\ x:\sen{x}=1\\ &\ra A=0. \eea \eeex$$
(2). $$\beex \bea w(UAU^*)&=\sup_{\sen{x}=1}\sev{\sef{x,UAU^*}}\\ &=\sup_{\sen{x}=1}\sev{(U^*x)^*A(U^*x)}\\ &=\sup_{\sen{y}=1}\sev{y^*Ay}\quad\sex{y=U^*x}\\ &=w(A). \eea \eeex$$
(3). $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &\leq \sup_{\sen{x}=1} \sex{\sen{x}\cdot \sen{Ax}}\\ &=\sup_{\sen{x}=1}\sen{Ax}\\ &=\sen{A};\\ \sen{A}&=\sup_{\sen{x}=\sen{y}=1}\sev{\sef{y,Ax}}\\ &=\sup_{\sen{x}=\sen{y}=1} \sev{\frac{1}{4}\sum_{k=0}^3 i^k\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sev{\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sen{y+i^kx}^2\cdot w(A)\\ &=\sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\cdot 4\sex{\sen{x}^2+\sen{y}^2} \cdot w(A)\\ &=2w(A). \eea \eeex$$
(4). If $A$ is normal, then by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and hence $$\beex \bea \sen{Ax}^2&=\sef{Ax,Ax}\\ &=x^*A^*Ax\\ &=Ux^*\diag(|\lm_1|^2,\cdots,|\lm_n|^2)U^*x\\ &=\sum_{i=1}^n |\lm_i|^2|y_i|^2\quad\sex{y=U^*x}\\ &\leq \max_i\sen{\lm_i}^2\sen{y}^2\\ &\leq w(A)\sen{x}^2. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
随机推荐
- 【发问】代表ODBC、Ibatis 发问 Hibernate、Linq、Entity、JPA
分页: 多表关联查询: 多表操作 临时表: 存储过程式长语句 : Hibernate与iBATIS的比较 博客分类: db iBATISHibernateSQL数据结构ORM 1.出身 hibern ...
- 经典好文:android和iOS平台的崩溃捕获和收集
通过崩溃捕获和收集,可以收集到已发布应用(游戏)的异常,以便开发人员发现和修改bug,对于提高软件质量有着极大的帮助.本文介绍了iOS和android平台下崩溃捕获和收集的原理及步骤,不过如果是个人开 ...
- SQLSERVER 更改默认端口号
最近这几天,服务器的数据库(SQLSERVER)老是遭受到攻击,有人不断地轮训想登陆数据库,从SQL的日志里可以看出来,一开始我是通过本地安全策略禁用了对应的几个攻击ip,同时把数据库的sa账号给禁用 ...
- 一步步学习NHibernate(9)——连接查询和子查询(1)
请注明转载地址:http://www.cnblogs.com/arhat 在前几章中,我们把HQL的基本查询学习了一下,但是只有基本查询很显然不能满足我们的需求,那么就需要一下复杂查询比如" ...
- spring dataSourceRouter自动切换数据源
spring多数据源的切换,主要用到的是AbstractRoutingDataSource这个路由类,当我们的自定义的一个路由分发类继承AbstractRoutingDataSource类后,重写de ...
- Android架构图
- SSH开发框架搭建参考
一, 参考文章: 1, http://blog.csdn.net/communicate_/article/details/8644040 这篇文章讲的还算详尽,但是貌似有一些多余的代码: 2,
- php站点
thinkphp wordpress 记事狗 phpcms http://jingyan.baidu.com/article/4b07be3c61e93e48b380f3fd.html
- Scala的Pattern Matching Anonymous Functions
参考自http://stackoverflow.com/questions/19478244/how-does-a-case-anonymous-function-really-work-in-sca ...
- State Management
Samza的task可以把数据进行本地存储,并且对这些数据进行丰富的查询. 比较SQL中的select ... where...并不需要保存状态.但是aggregation和join就需要存储ro ...