多表关联

多表关联和单表关联类似,它也是通过对原始数据进行一定的处理,从其中挖掘出关心的信息。下面进入这个实例。

1 实例描述

输入是两个文件,一个代表工厂表,包含工厂名列和地址编号列;另一个代表地址表,包含地址名列和地址编号列。要求从输入数据中找出工厂名地址名对应关系,输出"工厂名——地址名"表。

样例输入如下所示。

1)factory:

factoryname                    addressed

Beijing Red Star                    1

Shenzhen Thunder                3

Guangzhou Honda                2

Beijing Rising                       1

Guangzhou Development Bank      2

Tencent                        3

Back of Beijing                     1

2)address:

addressID    addressname

1            Beijing

2            Guangzhou

3            Shenzhen

4            Xian

样例输出如下所示。

factoryname                        addressname

Back of Beijing                          Beijing

Beijing Red Star                        Beijing

Beijing Rising                          Beijing

Guangzhou Development Bank          Guangzhou

Guangzhou Honda                    Guangzhou

Shenzhen Thunder                    Shenzhen

Tencent                            Shenzhen

2 设计思路

多表关联和单表关联相似,都类似于数据库中的自然连接。相比单表关联,多表关联的左右表和连接列更加清楚。所以可以采用和单表关联的相同处理方式,map识别出输入的行属于哪个表之后,对其进行分割,将连接的列值保存在key中,另一列和左右表标识保存在value中,然后输出。reduce拿到连接结果之后,解析value内容,根据标志将左右表内容分开存放,然后求笛卡尔积,最后直接输出。

这个实例的具体分析参考单表关联实例。下面给出代码。

 import java.io.IOException;
import java.lang.String;
import java.util.Iterator;
import java.util.StringTokenizer; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MTJoin {
public static int time = 0; public static class Map extends Mapper<Object, Text, Text, Text> { @Override
protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String relationType = new String();
if (line.contains("factoryname") == true
|| line.contains("addressID") == true) {
return;
} StringTokenizer itr = new StringTokenizer(line);
String mapkey = new String();
String mapvalue = new String(); String[] split = line.split(" "); if (split.length == 2 && split[1].charAt(0) >= '0'
&& split[1].charAt(0) <= '9') {
mapkey = split[1];
mapvalue = split[0];
relationType = "1";
}
if (split.length == 2 && split[0].charAt(0) >= '0'
&& split[0].charAt(0) <= '9') {
mapkey = split[0];
mapvalue = split[1];
relationType = "2";
} context.write(new Text(mapkey), new Text(relationType + "+"
+ mapvalue)); }
} public static class Reduce extends Reducer<Text, Text, Text, Text> { @Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
if (0 == time) {
context.write(new Text("factoryname"), new Text("addressname"));
time++;
} int factorynum = 0;
String[] factory = new String[10];
int addressnum = 0;
String[] address = new String[10]; for(Text value:values ){
if (0 == value.toString().length()) {
continue;
} char relationType = value.toString().charAt(0); // left
if ('1' == relationType) {
factory[factorynum] = value.toString().substring(2);
factorynum++;
}
// right
if ('2' == relationType) {
address[addressnum] = value.toString().substring(2);
addressnum++;
}
} if (0 != factorynum && 0 != addressnum) {
for (int m = 0; m < factorynum; m++) {
for (int n = 0; n < addressnum; n++) {
context.write(new Text(factory[m]),
new Text(address[n]));
}
}
}
} } public static void main(String[] args) throws Exception {
Job job = new Job();
job.setJobName("MTJoin");
job.setJarByClass(MTJoin.class); job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

MapReduce多表连接的更多相关文章

  1. MapReduce 多表连接

    题目描述: 现在有两个文件,1为存放公司名字和城市ID,2为存放城市ID和城市名 表一: factoryname,addressed Beijing Red Star,1 Shenzhen Thund ...

  2. Hadoop阅读笔记(三)——深入MapReduce排序和单表连接

    继上篇了解了使用MapReduce计算平均数以及去重后,我们再来一探MapReduce在排序以及单表关联上的处理方法.在MapReduce系列的第一篇就有说过,MapReduce不仅是一种分布式的计算 ...

  3. Hadoop-Map/Reduce之单表连接的实现

    MapReduce程序就是根据其特性对数据进行一个简单的逻辑处理,其中最为重要的一个特性就是根据key值将value值进行合并,其次就是在shuffle阶段有排序. 遇到一个MR程序就是要巧妙利用合并 ...

  4. SQL多表连接查询(详细实例)

    转载博客:joeleo博客(http://www.xker.com/page/e2012/0708/117368.html) 本文主要列举两张和三张表来讲述多表连接查询. 新建两张表: 表1:stud ...

  5. 关于Oracle表连接

    表连接注意left join on与where的区别: select * from dept; select * from emp; select * from emp a right outer j ...

  6. SQL多表连接查询

    SQL多表连接查询 本文主要列举两张和三张表来讲述多表连接查询. 新建两张表: 表1:student  截图如下: 表2:course  截图如下: (此时这样建表只是为了演示连接SQL语句,当然实际 ...

  7. oracle(sql)基础篇系列(二)——多表连接查询、子查询、视图

        多表连接查询 内连接(inner join) 目的:将多张表中能通过链接谓词或者链接运算符连接起来的数据查询出来. 等值连接(join...on(...=...)) --选出雇员的名字和雇员所 ...

  8. Access数据库多表连接查询

    第一次在Access中写多表查询,就按照MS数据库中的写法,结果报语法错,原来Access的多表连接查询是不一样的 表A.B.C,A关联B,B关联C,均用ID键关联 一般写法:select * fro ...

  9. PostgreSQL-join多表连接查询和子查询

    一.多表连接查询 1.连接方式概览 [inner] join 内连接:表A和表B以元组为单位做一个笛卡尔积,记为表C,然后在C中挑选出满足符合on 语句后边的限制条件的内容. left [outer] ...

随机推荐

  1. 判断ie,并确定其版本号

    var UA = navigator.userAgent,isIE = UA.indexOf('MSIE') > -1,v = isIE ? /\d+/.exec(UA.split(';')[1 ...

  2. Android之利用HTTP网络通信实现与PHP的交互(三)

    Android与PHP的交互是通过Http网络编程来实现的,利用php访问数据库,并且操作数据库中的数据,利用php作为接口,使Android连接数据库. 一般情况下,我们使用Json格式进行传输,利 ...

  3. Content-type 对照表

    Content-Type,内容类型,一般是指网页中存在的Content-Type,用于定义网络文件的类型和网页的编码,决定浏览器将以什么形式.什么编码读取这个文件,比如用PHP输出图片文件.JSON数 ...

  4. show variables 详解

    back_log MySQL主线程检查连接并启动一个新线程这段时间内,可以设置多少个请求可以被存在堆栈中 connect_timeout 连接超时 检测方法nmap -p3306 数据库ip dela ...

  5. 关于JFace的自定义对话框(Dialog类)

    仅仅是使用MessageDialog,InputDialog等JFace中现成的对话框类是无法满足实际项目开发需要的. 很多时候都需要自己定制对话框,自定义对话框只要在Dialog类的基础上作扩展就行 ...

  6. Time complexity analysis of algorithms

    时间复杂性的计算一般而言,较小的问题所需要的运行时间通常要比较大的问题所需要的时间少.设一个程序P所占用的时间为T,则 T(P)=编译时间+运行时间. 编译时间与实例特征是无关的,且可假设一个编译过的 ...

  7. BigInteger

    首先上模板(不断更新中...)(根据刘汝佳AOAPCII修改) #include <iostream> #include <sstream> #include <cstd ...

  8. [转载]PHP 字符串替换中文

    $a = "Car 神"; $result = preg_replace('/([\x80-\xff]*)/i','',$a); var_dump($result); 参考链接:p ...

  9. placeholder

    html: <div style="position:relative;">   <input type="password" id=&quo ...

  10. Java语言编写计算器(简单的计算器)

    Java编写的一个简单计算器,本人还比较菜,只能这样了,有点代码冗余,不能连续计算. import javax.swing.*; import java.awt.*; import java.awt. ...