POJ 1966 Cable TV Network (无向图点连通度)
【题意】给出一个由n个点,m条边组成的无向图。求最少去掉多少点才能使得图中存在两点,它们之间不连通。
【思路】回想一下s->t的最小点割,就是去掉多少个点能使得s、t不连通。那么求点连通度就枚举源点、汇点,然后取其中最小点割的最小值就好了。注意如果最大流大于节点数,则应该把它修改为节点数。
【代码】
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXV = 105;
const int MAXE = 5005;
const int oo = 0x3fffffff;/* Dinic-2.0-2013.07.21: adds template. double & int 转换方便多了,也不易出错 ~*/
template
struct Dinic{
struct node{
int u, v;
T flow;
int opp;
int next;
}arc[2*MAXE];
int vn, en, head[MAXV];
int cur[MAXV];
int q[MAXV];
int path[2*MAXE], top;
int dep[MAXV];
void init(int n){
vn = n;
en = 0;
mem(head, -1);
}
void insert_flow(int u, int v, T flow){
arc[en].u = u;
arc[en].v = v;
arc[en].flow = flow;
arc[en].next = head[u];
head[u] = en ++;arc[en].u = v;
arc[en].v = u;
arc[en].flow = 0;
arc[en].next = head[v];
head[v] = en ++;
}
bool bfs(int s, int t){
mem(dep, -1);
int lq = 0, rq = 1;
dep[s] = 0;
q[lq] = s;
while(lq 0){
dep[v] = dep[u] + 1;
q[rq ++] = v;
}
}
}
return false;
}
T solve(int s, int t){
T maxflow = 0;
while(bfs(s, t)){
int i, j;
for (i = 1; i arc[path[k]].flow){
minflow = arc[path[k]].flow;
mink = k;
}
for (int k = 0; k dinic;struct path{
int u, v;
}p[MAXE];
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int n, m;
while(scanf("%d %d", &n, &m) != EOF){
if (m == 0){
if (n == 1)
puts("1");
else
puts("0");
continue;
}
for (int i = 0; i【点连通度、边连通度】
[点连通度]:最少去掉多少点才能使得图中存在两点,它们之间不连通。
[边连通度]:最少去掉多少边才能使得图中存在两点,它们之间不连通。
[有向图边连通度]:按图建立流网络,每条边容量为1,枚举源汇点求最小边割集,并取最小值。
[无向图边连通度]:把无向边转化为两条相反方向的有向边转换为有向图边连通度即可。
[点连通度]:求最小边割集变为求最小点割集,具体做法是:每个点拆成(i, i', 1)的边,原图中的边变成(u, v, oo)的边,源点s为s',汇点t还是t。然后枚举源汇点求最小点割集,并取最小值。无向图转有向图的做法和上面一样。
POJ 1966 Cable TV Network (无向图点连通度)的更多相关文章
- POJ 1966 Cable TV Network(顶点连通度的求解)
Cable TV Network Time Limit: 1000MS Memory Limit: 30000K Total Submissi ...
- POJ 1966 Cable TV Network
Cable TV Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 4702 Accepted: 2173 ...
- POJ 1966 Cable TV NETWORK(网络流-最小点割集)
Cable TV NETWORK The interconnection of the relays in a cable TV net ...
- POJ 1966 Cable TV Network (点连通度)【最小割】
<题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见 >>> 本题是求点连通度, ...
- POJ - 1966 Cable TV Network (最大流求点连通度)
题意:求一个无向图的点连通度.点联通度是指,一张图最少删掉几个点使该图不连通:若本身是非连通图,则点连通度为0. 分析:无向图的点连通度可以转化为最大流解决.方法是:1.任意选择一个点作为源点:2.枚 ...
- POJ 1966 Cable TV Network (算竞进阶习题)
拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...
- POJ 1966 Cable TV Network 【经典最小割问题】
Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...
- poj 1966 Cable TV Network 顶点连通度
题目链接 给一个图, n个点m条边, 求至少去掉多少个点可以使得图不再联通.随便指定一个点为源点, 枚举其他点为汇点的情况, 跑网络流, 求其中最小的情况. 如果最后ans为inf, 说明是一个完全图 ...
- POJ 1966 Cable TV Network (最大流最小割)
$ POJ~1966~Cable~TV~Network $ $ solution: $ 第一眼可能让人很难下手,但本就是冲着网络流来的,所以我们直接一点.这道题我们要让这个联通图断开,那么势必会有两个 ...
随机推荐
- Hbase的安装测试工作
Hbase的安装测试工作: 安装:http://www.cnblogs.com/neverwinter/archive/2013/03/28/2985798.html 测试:http://www.cn ...
- Unity3D 相关项目代码
一.Application.PresistentDataPath 注意最后面是没有/的 public static string PresistentDataPathForEditor = " ...
- 精华阅读第 10 期 |解开阿尔法狗(AlphaGo)人工智能的画皮
谷歌用一个变了身的古老「穷举算法」,披上「神经网络」的画皮,假装「跨时代」的黑科技,忽悠广大「膜拜者」,「狮仙」我实在看不下去了,来揭一揭这只幺蛾子小狗的画皮. 本期是移动开发精英俱乐部的第10期推荐 ...
- POJ2480 Longge's problem gcd&&phi
题意简洁明了.做这题主要是温习一下phi的求法.令gcd(i,n)=k,实际上我们只需要求出有多少个i使得gcd(i,n)=k就可以了,然后就转化成了求phi(n/k)的和,但是n很大,我们不可能预处 ...
- 【转】12 款优秀的 JavaScript MVC 框架评估
JavaScript MVC 框架有很多,不同框架适合于不同项目需求.了解各种框架的性能及优劣有利于我们更加快捷的开发.作者(Gordon L.Hempton)一直在寻求哪种MVC框架最为完美,他将目 ...
- POJ2513Colored Sticks
http://poj.org/problem?id=2513 题意 : 一些木棒,两端都涂上颜色,求是否能将木棒首尾相接,连成一条直线,要求不同木棒相接的一边必须是相同颜色的. 思路 : 这个题的话就 ...
- windows下安装ubantu
首先声明我是一个linux大菜鸟,之所以学这个,一个是好玩,另外做DL的一些软件如Caffe要在这个平台上运行,所以没事就鼓捣鼓捣.linux是一种内核,市场上支持这种内核的操作系统有uban ...
- Visual Studio Support (DDEX)
原文 VS2012,VS2013,and VS2015Pro+NpgsqlDdexProvider+EFv6 how to(by @kenjiuno) Reference: #213 Overview ...
- .md文件 Markdown 语法说明
Markdown 语法说明 (简体中文版) / (点击查看快速入门) 概述 宗旨 兼容 HTML 特殊字符自动转换 区块元素 段落和换行 标题 区块引用 列表 代码区块 分隔线 区段元素 链接 强调 ...
- Intellij IDEA 构建Spring Web项目 — 用户登录功能
相关软件: 1.Intellij IDEA14:http://pan.baidu.com/s/1nu16VyD 2.JDK7:http://pan.baidu.com/s/1dEstJ5f 3.Tom ...