Arbitrage

题目链接:

http://acm.hust.edu.cn/vjudge/contest/122685#problem/I

Description


Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.
Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

Input


The input will contain one or more test cases. Om the first line of each test case there is an integer n (1

Output


For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".

Sample Input


3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar

3

USDollar

BritishPound

FrenchFranc

6

USDollar 0.5 BritishPound

USDollar 4.9 FrenchFranc

BritishPound 10.0 FrenchFranc

BritishPound 1.99 USDollar

FrenchFranc 0.09 BritishPound

FrenchFranc 0.19 USDollar

0

Sample Output


Case 1: Yes
Case 2: No

Hint




##题意:

求货币经过一系列兑换操作后能否升值.


##题解:

转化为图模型后就是求满足条件的环是否存在.
这里把求最短路时的加法改成乘法即可,结果就是是否存在环使得路径大于1.
以下分别用三种方法求:
bellman-ford和floyd用时都较多,800+ms.
spfa只需要90+ms, 不过需要用c++交,否则TLE.(真是神奇)


##代码:
####spaf法:94ms (必须用c++交,否则TLE)
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 1100
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

int m,n,k;

int edges, u[maxn], v[maxn];

double w[maxn];

int first[maxn], _next[maxn];

double dis[maxn];

void add_edge(int s, int t, double val) {

u[edges] = s; v[edges] = t; w[edges] = val;

_next[edges] = first[s];

first[s] = edges++;

}

queue q;

bool inq[maxn];

int inq_cnt[maxn];

bool spfa(int s) {

memset(inq, 0, sizeof(inq));

memset(inq_cnt, 0, sizeof(inq_cnt));

for(int i=1; i<=n; i++) dis[i] = 0; dis[s] = 1;

while(!q.empty()) q.pop();

q.push(s); inq_cnt[s]++;

while(!q.empty()) {
int p = q.front(); q.pop();
inq[p] = 0;
for(int e=first[p]; e!=-1; e=_next[e]) {
double tmp = dis[u[e]] * w[e];
if(dis[v[e]] < tmp) {
dis[v[e]] = tmp;
if(!inq[v[e]]) {
q.push(v[e]);
inq[v[e]] = 1;
inq_cnt[v[e]]++;
if(inq_cnt[v[e]] >= n) return 0;
}
}
}
} return 1;

}

map<string,int> name;

int main(int argc, char const *argv[])

{

//IN;

int ca = 1;
while(scanf("%d", &n) != EOF && n)
{
memset(first, -1, sizeof(first));
edges = 0;
name.clear(); for(int i=1; i<=n; i++) {
string s; cin >> s;
name.insert(make_pair(s, i));
}
cin >> m;
for(int i=1; i<=m; i++) {
string s,t; double w;
cin>> s >> w >> t;
int u = name.find(s)->second;
int v = name.find(t)->second;
add_edge(u,v,w);
} if(!spfa(1)) printf("Case %d: Yes\n", ca++);
else printf("Case %d: No\n", ca++);
} return 0;

}


####bellman-ford法:875ms
``` cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 1100
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; int m,n,k;
int edges, u[maxn], v[maxn];
double w[maxn];
int first[maxn], next[maxn];
double dis[maxn]; void add_edge(int s, int t, double val) {
u[edges] = s; v[edges] = t; w[edges] = val;
next[edges] = first[s];
first[s] = edges++;
} bool bellman(int s) {
for(int i=1; i<=n; i++) dis[i]=0; dis[s] = 1; for(int i=1; i<=n; i++) {
for(int e=0; e<edges; e++) {
double tmp = dis[u[e]] * w[e];
if(dis[v[e]] < tmp) {
dis[v[e]] = dis[u[e]] * w[e];
if(i == n) return 0;
}
}
} return 1;
} map<string,int> name; int main(int argc, char const *argv[])
{
//IN; int ca = 1;
while(scanf("%d", &n) != EOF && n)
{
memset(first, -1, sizeof(first));
edges = 0;
name.clear(); for(int i=1; i<=n; i++) {
string s; cin >> s;
name.insert(make_pair(s, i));
}
cin >> m;
for(int i=1; i<=m; i++) {
string s,t; double w;
cin>> s >> w >> t;
int u = name.find(s)->second;
int v = name.find(t)->second;
add_edge(u,v,w);
} if(!bellman(1)) printf("Case %d: Yes\n", ca++);
else printf("Case %d: No\n", ca++);
} return 0;
}

floyd法:875ms

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 35
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std; int m,n,k;
double dis[maxn][maxn]; void floyd() {
for(int k=1; k<=n; k++)
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
if(dis[i][j] < dis[i][k]*dis[k][j])
dis[i][j] = dis[i][k] * dis[k][j];
} map<string,int> name; int main(int argc, char const *argv[])
{
//IN; int ca = 1;
while(scanf("%d", &n) != EOF && n)
{
name.clear();
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
dis[i][j] = (i==j? 1.0:inf); for(int i=1; i<=n; i++) {
string s; cin >> s;
name.insert(make_pair(s, i));
}
cin >> m;
for(int i=1; i<=m; i++) {
string s,t; double w;
cin>> s >> w >> t;
int u = name.find(s)->second;
int v = name.find(t)->second;
dis[u][v] = w;
} floyd(); int flag = 1;
for(int i=1; i<=n; i++)
if(dis[i][i] > 1.0) {flag = 0;break;} if(!flag) printf("Case %d: Yes\n", ca++);
else printf("Case %d: No\n", ca++);
} return 0;
}

POJ 2240 Arbitrage (求负环)的更多相关文章

  1. POJ 2240 Arbitrage (spfa判环)

    Arbitrage Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of ...

  2. POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环)

    POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环) Description Arbi ...

  3. POJ 3259 Wormholes(最短路径,求负环)

    POJ 3259 Wormholes(最短路径,求负环) Description While exploring his many farms, Farmer John has discovered ...

  4. 最短路(Floyd_Warshall) POJ 2240 Arbitrage

    题目传送门 /* 最短路:Floyd模板题 只要把+改为*就ok了,热闹后判断d[i][i]是否大于1 文件输入的ONLINE_JUDGE少写了个_,WA了N遍:) */ #include <c ...

  5. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  6. Contest20140710 loop bellman-ford求负环&&0/1分数规划

    loop|loop.in|loop.out 题目描述: 给出一个有向带权图,权为边权,求一个简单回路,使其平均边权最小. 简单回路指不多次经过同一个点的回路. 输入格式: 第一行两个整数,表示图的点数 ...

  7. poj 2240 Arbitrage 题解

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21300   Accepted: 9079 Descri ...

  8. POJ3259 Wormholes —— spfa求负环

    题目链接:http://poj.org/problem?id=3259 Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submis ...

  9. poj 2240 Arbitrage(Bellman_ford变形)

    题目链接:http://poj.org/problem?id=2240 题目就是要通过还钱涨自己的本钱最后还能换回到自己原来的钱种. 就是判一下有没有负环那么就直接用bellman_ford来判断有没 ...

  10. ACM: POJ 3259 Wormholes - SPFA负环判定

     POJ 3259 Wormholes Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

随机推荐

  1. C#中控件的CheckState和Checked属性区别?

    Checked 和CheckState都是检查控件选中状态,都能判断是否选中控件. 只是Checked 通过布尔判断(true & false): CheckState 通过枚举判断. che ...

  2. awk输出单引号,双引号

    双引号: awk '{print "\""}'        #放大:awk '{print "  \"  "}' 使用“”双引号把一个双引 ...

  3. [HDOJ4027]Can you answer these queries?(线段树,特殊成段更新,成段查询)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4027 RT,该题要求每次更新是更新所有节点,分别求平方根,查询是求和.昨晚思前想后找有没有一个数学上的 ...

  4. 进程间通信机制<转>

    1   文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待.因此,进程不必使用文件I/O操作,只需简单的指针操作就可读取和修改文件的内容. ...

  5. 【Todo】JS跨域访问问题的解决

    做双十一,需要在主会场页面,嵌入我们产品的JS豆腐块.而这个豆腐块需要调用我们后端的数据接口,涉及跨域访问. 参考 http://www.cnblogs.com/2050/p/3191744.html ...

  6. Python3 学习第三弹:异常情况如何处理?

    python 的处理错误的方式: 1> 断言 assert condition 相当于 if not condition: crash program 断言设置的目的就是因为与其让程序晚点崩溃, ...

  7. bzoj2351 2462

    我没写hash,写了一些奇怪的做法,好像被hash随便操了…… 如果没有多测,那么这道题是白书上的例题 把询问矩阵当作a个模板串,建成一个ac自动机 把一开始的矩阵当作n个串放到自动机上匹配,找到a个 ...

  8. UVa 116 (多段图的最短路) Unidirectional TSP

    题意: 有一个m行n列的正整数环形矩阵(即矩阵第一行的上一行是最后一行,最后一行的下一行是第一行),从第一列的任意位置出发,每次只能向右,右上,右下三个方向行走,输出路径及路径上所有数之和的最大值,多 ...

  9. UVa 437 (变形的LIS) The Tower of Babylon

    题意: 有n种类型的长方体,每种长方体的个数都有无限个.当一个长方体的长和宽分别严格小于另一个长方体的长和宽的时候,才可以把这个放到第二个上面去.输出这n种长方体能组成的最大长度. 分析: 虽说每种都 ...

  10. ListView 使用

    1. 不使用xml 文件 动态创建 Listview 并且绑定 ArrayList ListView listView = new ListView(this); listView.setAdapte ...