题目链接:

题目

E. George and Cards

time limit per test:2 seconds

memory limit per test:256 megabytes

问题描述

George is a cat, so he loves playing very much.

Vitaly put n cards in a row in front of George. Each card has one integer written on it. All cards had distinct numbers written on them. Let's number the cards from the left to the right with integers from 1 to n. Then the i-th card from the left contains number pi (1 ≤ pi ≤ n).

Vitaly wants the row to have exactly k cards left. He also wants the i-th card from left to have number bi written on it. Vitaly gave a task to George, to get the required sequence of cards using the remove operation n - k times.

In one remove operation George can choose w (1 ≤ w; w is not greater than the current number of cards in the row) contiguous cards (contiguous subsegment of cards). Let's denote the numbers written on these card as x1, x2, ..., xw (from the left to the right). After that, George can remove the card xi, such that xi ≤ xj for each j (1 ≤ j ≤ w). After the described operation George gets w pieces of sausage.

George wondered: what maximum number of pieces of sausage will he get in total if he reaches his goal and acts optimally well? Help George, find an answer to his question!

输入

The first line contains integers n and k (1 ≤ k ≤ n ≤ 106) — the initial and the final number of cards.

The second line contains n distinct space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the initial row of cards.

The third line contains k space-separated integers b1, b2, ..., bk — the row of cards that you need to get. It is guaranteed that it's possible to obtain the given row by using the remove operation for n - k times.

输出

Print a single integer — the maximum number of pieces of sausage that George can get if he acts optimally well.

样例

input

3 2

2 1 3

1 3

output

1

input

10 5

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10

output

30

题意

给你一个长度为n的原始序列和一个长度为k子序列,要你把不属于这个子序列的数都删了,你可以选择的操作是每次选连续的w个数,然后删除最小的那个,并且你能够获得w的贡献值,问你如何操作n-k次使贡献值的和最大。

题解

只要我们按序列的值递增来做,并且每次贪心取最大的区间,就能得到最优,一开始我用线段树维护sum和min,在每次操作时用二分+区间min找到左右界,用sum统计区间内还存在的数的和。复杂度O(nlogn+n(logn)^2)第八组数据就t了。(orz)

正解是一开始就用一个set只维护那些比当前数小的并且最后一定会保留下来的数(不会保留下来的,比当前数小的数都已经删除了,所以根本不要放到set里面,这样子做的话每次找x的前驱后继就可以做完了,再加一个线段树或树状数组维护一下区间和就可以了,时间复杂度只有O(nlogn)。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<set>
#define X first
#define Y second
#define M l+(r-l)/2
#define lson (o<<1)
#define rson ((o<<1)|1)
using namespace std; const int maxn = 1e6+10;
const int INF = 0x3f3f3f3f;
typedef __int64 LL; int minv[maxn << 2];
LL sumv[maxn << 2];
int used[maxn],id[maxn];
int n, k;
set<int> st; int _p, _v;
void update(int o, int l, int r) {
if (l == r) {
sumv[o] = _v;
}
else {
if (_p <= M) update(lson, l, M);
else update(rson, M + 1, r);
minv[o] = min(minv[lson], minv[rson]);
sumv[o] = sumv[lson] + sumv[rson];
}
} int ql, qr;
LL _sum;
void query(int o, int l, int r) {
if (ql <= l&&r <= qr) {
_sum += sumv[o];
}
else {
if (ql <= M) query(lson, l, M);
if (qr > M) query(rson, M + 1, r);
}
} int main() {
memset(used, 0, sizeof(used));
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) {
int x; scanf("%d", &x);
id[x] = i;
_p = i; _v = 1;
update(1, 1, n);
}
for (int i = 1; i <= k; i++) {
int x; scanf("%d",&x);
used[x] = 1;
}
LL ans = 0;
st.insert(0);
st.insert(n + 1);
for (int i = 1; i <= n; i++) {
if (!used[i]) {
set<int>::iterator it = st.upper_bound(id[i]);
qr = *it - 1; ql = *(--it) + 1;
_sum = 0;
query(1, 1, n);
ans += _sum;
_p = id[i], _v = 0;
update(1, 1, n);
}
else {
st.insert(id[i]);
}
}
printf("%I64d\n", ans);
return 0;
}

乱七八糟:

这道题和之前做过的用线段树来维护一个元素的名次的动态查询点这里有异曲同工之妙,都利用了数本身的有序性来排除其他干扰的元素。 这道题也体现了离线处理的巧妙,比如说排个序啥的是吧。

Codeforces Round #227 (Div. 2) E. George and Cards 线段树+set的更多相关文章

  1. Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组

    E. George and Cards   George is a cat, so he loves playing very much. Vitaly put n cards in a row in ...

  2. Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树

    C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...

  3. Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树

    题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...

  4. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  6. Codeforces Round #149 (Div. 2) E. XOR on Segment (线段树成段更新+二进制)

    题目链接:http://codeforces.com/problemset/problem/242/E 给你n个数,m个操作,操作1是查询l到r之间的和,操作2是将l到r之间的每个数xor与x. 这题 ...

  7. Codeforces Round #321 (Div. 2) E. Kefa and Watch 线段树hash

    E. Kefa and Watch Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/580/prob ...

  8. Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)

    题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...

  9. Codeforces Round #207 (Div. 1) A. Knight Tournament (线段树离线)

    题目:http://codeforces.com/problemset/problem/356/A 题意:首先给你n,m,代表有n个人还有m次描述,下面m行,每行l,r,x,代表l到r这个区间都被x所 ...

随机推荐

  1. Part 100 Func delegate in c#

    What is Func<T,TResult> in C#? In simple terms,Func<T,TResult> is just generic delegate. ...

  2. 23----2013.07.01---Div和Span区别,Css常用属性,选择器,使用css的方式,脱离文档流,div+css布局,盒子模型,框架,js基本介绍

    01 复习内容 复习之前的知识点 02演示VS创建元素 03div和span区别 通过display属性进行DIV与Span之间的转换.div->span 设置display:inline   ...

  3. 四步完成ajax的使用

    什么是ajax? ajax(异步javascript xml) 能够刷新局部网页数据而不是重新加载整个网页. 如何使用ajax? 第一步,创建xmlhttprequest对象,var xmlhttp ...

  4. 在iOS中,实现点击搜索结果隐藏搜索结果的方法。

    不知道有没有别的什么的好的方法,最近在实现一个需求(点击搜索,然后输入搜索内容,显示搜索出来的结果,然后点击搜索结果,在当前页面显示所点击的结果的详细的信息).遇到的问题是,点击搜索结果的时候,搜索的 ...

  5. 【学习笔记】【C语言】常量

    1. 什么是常量 常量,表示一些固定的数据 2. 常量的分类 1> 整型常量(int) 包括了所有的整数,比如6.27.109.256.-10.0.-289等 2> 浮点型常量(float ...

  6. 理解C#系列 / C#语言的特性

    C#语言的特性 大多数语句都已(;)结尾 用({})定义语句块 单行注释(//),多行注释(/*......*/)智能注释(///) 区分大小写 用namespace名称空间对类进行分类 在C#中的所 ...

  7. Python-Day15 JavaScript/DOM

    JavaScript JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScript语言的规则编写相应代码之,浏览器可以解释并做出相应的处理. ...

  8. 9款精美别致的CSS3菜单和按钮

    1.超具立体感的CSS3 3D菜单 菜单项带小图标 记得之前向大家分享过不少CSS3 3D菜单,比如CSS3 3D动画菜单 3D立方体菜单项和HTML5/CSS3自定义下拉框 3D卡片折叠动画,效果都 ...

  9. 将string转换成char*

    string 是c++标准库里面其中一个,封装了对字符串的操作  把string转换为char* 有3中方法:  1.data  如:  string str="abc";  ch ...

  10. javascript里面技巧整理

    web develop tools secrets: http://jinlong.github.io/blog/2013/08/29/devtoolsecrets/ 1.Date new Date( ...