我觉得我要改一下签名了……怎么会有窝这么啰嗦的人呢?

做这题需要先学习左偏树《左偏树的特点及其应用》 然后做一下POJ3666,这题的简单版。

思路:

考虑一下维护中位数的过程
原数组为A,找到的不降数列为B
当对于A的前n个数已经找好了最优解B[1…n],可知此时A被分成很多块,并被一些大顶堆记录,假设第i块有num个数,那么第i个堆维护这一块的最小的(num+1)/2个数,堆顶即为中位数。
假设已经处理好前7个数,被分为两块 ([a,b],c,d) ([h,e],f) (每一块按升序排列,[]中的数是堆里面维护的。
因为数列是不降的,所以b≤e
当新添加一个元素的时候,设为x,如果x≤e,将需要向前合并。
那么新的块应该是……分两种情况……
1.x>h ([h,x],e,f)
2.x<h ([x,h],e,f)

设新的中位数是val=max(h, x)  分类讨论一下可以发现改变的值是(e-val)+(val-x)

这里假设是([x,h],e,f)
当h<b时,需要继续向前合并。
合并之后是([x,h,a,b],c,d,e,f) (顺序已经不确定了,只能确定栈中元素和栈顶是b

可以发现大小为偶数的块和偶数的块合并,合并后的堆不需要弹出元素。
合并前([a,b],c,d) 的中位数是b ([x,h],e,f)的中位数是h, 合并后的中位数的b
可知答案改变都是发生在集合([x,h],e,f)中的,我们又知道b≤e(上面提到过),那么很容易得到答案是不变哒!(就是把(h-x)+(h-h)+(e-h)+(f-h)变成了(b-x)+(b-h)+(e-b)+(f-b),值是一样的

上面是偶数和偶数合并,继续讨论前一块奇数和后一块偶数合并。
设前一块是([a,b],c) 中位数是b,后一块是([d,e],f,g)中位数是e,合并后不需要弹出,中位数是b,类似上面的情况,我们可以得出b≤f,所以答案仍然不变。

前一块偶数,后一块奇数
([a,b],c,d)中位数是b ([e,f],g)中位数是f 合并后不需要弹出 中位数是b 其中(f<b≤g)
那么答案由([e,f],g)的改变产生,f的左右两边是可以抵消掉的,改变只会因为f,改变的值是b-f

前一块奇数,后一块奇数
设前一块是([a,b],c) 中位数是b,后一块是([d,e],f,)中位数是e 其中e<b≤f
合并后弹出元素b,中位数为max(a,e),设为val
那么答案改变就是b-e

到此,所有情况都讨论完了ˊ_>ˋ

结论:当一个块和前面的块合并时,如果当前块的数量为偶数,答案不变,否则答案增加(前一块的中位数-当前块的中位数)

代码:

/*****************************************
Problem: 3016 User: G_lory
Memory: 12676K Time: 1797MS
Language: G++ Result: Accepted
*****************************************/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int N = ;
const int INF = 0x5f5f5f5f;
typedef long long ll; struct LTree {
int l, r, sz;
int key, dis;
bool operator<(const LTree lt) const {
return key < lt.key;
}
} tr[N];
int cnt_tr; int NewTree(int k) {
tr[++cnt_tr].key = k;
tr[cnt_tr].l = tr[cnt_tr].r = tr[cnt_tr].dis = ;
tr[cnt_tr].sz = ;
return cnt_tr;
} int Merge(int x, int y) {
if (!x || !y) return x + y;
if (tr[x] < tr[y]) swap(x, y);
tr[x].r = Merge(tr[x].r, y);
if (tr[tr[x].l].dis < tr[tr[x].r].dis) swap(tr[x].l, tr[x].r);
tr[x].dis = tr[tr[x].r].dis + ;
tr[x].sz = tr[tr[x].l].sz + tr[tr[x].r].sz + ;
return x;
} int Top(int x) {
return tr[x].key;
} void Pop(int &x) {
x = Merge(tr[x].l, tr[x].r);
} int root[N], num[N];
void cal(int a[], int n, int ans[]) {
int res;
cnt_tr = res = ;
int cnt = ;
for (int i = ; i < n; ++i) {
root[++cnt] = NewTree(a[i]);
num[cnt] = ;
while (cnt > && Top(root[cnt]) < Top(root[cnt-])) {
cnt--;
if (num[cnt+]&) res += Top(root[cnt]) - Top(root[cnt+]);
root[cnt] = Merge(root[cnt], root[cnt+]);
num[cnt] += num[cnt+];
while (tr[root[cnt]].sz* > num[cnt]+) {
Pop(root[cnt]);
}
int now = Top(root[cnt]); }
ans[i] = res;
}
} int a[N], b[N], c[N];
int in[N][N], de[N][N];
int dp[N][N];
int main() {
//freopen("in", "r", stdin);
int n, k;
while (~scanf("%d%d",&n, &k) && n) {
for (int i = ; i <= n; ++i) {
scanf("%d", a+i);
b[i] = a[i]-i;
c[i] = -a[i]-i;
}
for (int i = ; i <= n; ++i) {
cal(c+i, n-i+, de[i]+i);
cal(b+i, n-i+, in[i]+i);
}
for (int i = ; i <= n; ++i) dp[][i] = INF;
for (int i = ; i <= k; ++i) {
dp[i][] = ;
for (int j = ; j <= n; ++j) {
dp[i][j] = INF;
for (int p = ; p < j; ++p) {
dp[i][j] = min(dp[i][j], dp[i-][p] + min(in[p+][j], de[p+][j]));
}
}
}
printf("%d\n", dp[k][n]);
}
return ;
}

  

POJ3016-K-Monotonic(左偏树+DP)的更多相关文章

  1. 左偏树(DP)问题

    问题:A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ woul ...

  2. 『左偏树 Leftist Tree』

    新增一道例题 左偏树 Leftist Tree 这是一个由堆(优先队列)推广而来的神奇数据结构,我们先来了解一下它. 简单的来说,左偏树可以实现一般堆的所有功能,如查询最值,删除堆顶元素,加入新元素等 ...

  3. Monkey King(左偏树 可并堆)

    我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 ...

  4. POJ3666-Making the Grade(左偏树 or DP)

    左偏树 炒鸡棒的论文<左偏树的特点及其应用> 虽然题目要求比论文多了一个条件,但是……只需要求非递减就可以AC……数据好弱…… 虽然还没想明白为什么,但是应该觉得应该是这样——求非递减用大 ...

  5. k短路模板(洛谷P2483 [SDOI2010]魔法猪学院)(k短路,最短路,左偏树,priority_queue)

    你谷数据够强了,以前的A*应该差不多死掉了. 所以,小伙伴们快来一起把YL顶上去把!戳这里! 俞鼎力的课件 需要掌握的内容: Dijkstra构建最短路径树. 可持久化堆(使用左偏树,因其有二叉树结构 ...

  6. 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]

    题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...

  7. Luogu P1552 [APIO2012]派遣【左偏树】By cellur925

    题目传送门 $Chat$ 哈哈哈我xj用dfs序乱搞竟然炸出了66分....(其实还是数据水,逃) $Sol$ 首先我们应该知道,一个人他自己的满意度与他子树所有节点的领导力是无关的,一个人的满意度受 ...

  8. BZOJ 1455 罗马游戏 ——左偏树

    [题目分析] 左偏树的模板题目,大概就是尽量维护树的深度保持平衡,以及尽可能的快速合并的一种堆. 感觉和启发式合并基本相同. 其实并没有快很多. 本人的左偏树代码自带大常数,借鉴请慎重 [代码] #i ...

  9. 【BZOJ-1455】罗马游戏 可并堆 (左偏树)

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1355  Solved: 561[Submit][Status][Discuss] ...

随机推荐

  1. [itint5]两有序数组的中位数

    这个题和leetcode的基本一样.用了更好点的思路.在A中折半猜是不是中位数,A中没有后在B中猜.最后猜到B[j]<=A[i]<=B[j+1],此时,无论奇偶(2k+1或者2k个),A[ ...

  2. [topcoder]ZigZag

    http://community.topcoder.com/stat?c=problem_statement&pm=1259&rd=4493 动态规划题.如果不用DP,暴力的应当在2^ ...

  3. JNDI学习总结(二)——Tomcat下使用C3P0配置JNDI数据源

    一.C3P0下载 C3P0下载地址:http://sourceforge.net/projects/c3p0/files/?source=navbar

  4. 191. Number of 1 Bits

    题目: Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also ...

  5. Android开发经验记录

    一.    代码规范 定一个规范的主要目的,是为了让不同的开发人员写的代码能保持一致性,方便别人看自己的代码.另外,对个人来说,也能起到让自己看着舒服的作用. 1.      基本 * 使用UTF-8 ...

  6. fork()和vfork()区别

    fork创建进程,子进程和父进程不一定谁先执行 vfork创建的进程,不分配新的资源,子进程用父进程相应的资源,且子进程先执行. 用vfork创建的进程,资源共享,那么,数据是不是不牵扯通信间的机制, ...

  7. C#创建XML文件并保存

    随着XML的普及以及在动态WEB应用程序中大量应用,如何通过.NET创建,删除,修改XML文件变的也来也重要了.一个简单的概念是,XML文件跟大的文本文件并没有什么区别,同时它是先于.NET出现,很多 ...

  8. Android横竖屏切换总结

    Android横竖屏切换总结(Android资料) Android横竖屏要解决的问题应该就两个: 一.布局问题 二.重新载入问题 1.布局问题:如果不想让软件在横竖屏之间切换,最简单的办法就是在项目的 ...

  9. SQLite支持的SQL数据操作

    事务处理 Posted on 2013 年 1 月 1 日 by 林溪   事务为一组SQL命令的集合,这些SQL命令在执行时不可进行分割,即要么全部执行这些SQL命令,要么一个都不进行执行,事务操作 ...

  10. MySQL timed_mutexes

    提要: MySQL 5.5.39 Release版本正式从源码里删除了全局参数timed_mutexes.timed_mutexes原本用来控制是否对Innodb引擎的mutex wait进行 计时统 ...