JVM中的另一种锁Lock的实现。与synchronized不同的是,Lock完全用Java写成,在java这个层面是无关JVM实现的。在java.util.concurrent.locks包中有很多Lock的实现类,常用的有ReentrantLock、ReadWriteLock(实现类ReentrantReadWriteLock),其实现都依赖java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,因此我们以ReentrantLock作为讲解切入点。

1、ReentrantLock的调用过程

经过观察ReentrantLock把所有Lock接口的操作都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer:

static abstract class Sync extends AbstractQueuedSynchronizer

Sync又有两个子类:

final static class NonfairSync extends Sync
final static class FairSync extends Sync

显然是为了支持公平锁和非公平锁而定义,默认情况下为非公平锁。

先理一下Reentrant.lock()方法的调用过程(默认非公平锁):

这些讨厌的Template模式导致很难直观的看到整个调用过程,其实通过上面调用过程及AbstractQueuedSynchronizer的注释可以发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。tryAcquire方法的语义在于用具体子类判断请求线程是否可以获得锁,无论成功与否AbstractQueuedSynchronizer都将处理后面的流程。

2、锁实现(加锁)

简单说来,AbstractQueuedSynchronizer会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全部处于阻塞状态,经过调查线程的显式阻塞是通过调用LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park()本地方法,再进一步,HotSpot在Linux中中通过调用pthread_mutex_lock函数把线程交给系统内核进行阻塞。

该队列如图:

与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的前后关系。令人疑惑的是为什么采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。

当有线程竞争锁时,该线程会首先尝试获得锁,这对于那些已经在队列中排队的线程来说显得不公平,这也是非公平锁的由来,与synchronized实现类似,这样会极大提高吞吐量。

如果已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,因为线程并发对Tail调用CAS可能会导致其他线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现非常精巧,令人叹为观止,不入细节难以完全领会其精髓,下面详细说明实现过程:

2.1 Sync.nonfairTryAcquire

nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。

/**
* Performs non-fair tryLock. tryAcquire is
* implemented in subclasses, but both need nonfair
* try for trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

该方法会首先判断当前状态,如果c==0说明没有线程正在竞争该锁,如果不c !=0 说明有线程正拥有了该锁。如果发现c==0,则通过CAS设置该状态值为acquires,acquires的初始调用值为1,每次线程重入该锁都会+1,每次unlock都会-1,但为0时释放锁。如果CAS设置成功,则可以预计其他任何线程调用CAS都不会再成功,也就认为当前线程得到了该锁,也作为Running线程,很显然这个Running线程并未进入等待队列。

如果c !=0 但发现自己已经拥有锁,只是简单地++acquires,并修改status值,但因为没有竞争,所以通过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,并且实现的非常漂亮。

2.2 AbstractQueuedSynchronizer.addWaiter

addWaiter方法负责把当前无法获得锁的线程包装为一个Node添加到队尾:

/**
* Creates and enqueues node for given thread and mode.
*
* @param current the thread
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* @return the new node
*/
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}

其中参数mode是独占锁还是共享锁,默认为null,独占锁。追加到队尾的动作分两步:

a.如果当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail。

b.如果当前Tail为null或则线程调用CAS设置队尾失败,则通过enq方法继续设置Tail。

下面是enq方法:

/**
* Inserts node into queue, initializing if necessary. See picture above.
* @param node the node to insert
* @return node's predecessor
*/
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
Node h = new Node(); // Dummy header
h.next = node;
node.prev = h;
if (compareAndSetHead(h)) {
tail = node;
return h;
}
}
else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}

该方法就是循环调用CAS,即使有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是通过CAS把当前现在追加到队尾,并返回包装后的Node实例。

把线程要包装为Node对象的主要原因,除了用Node构造供虚拟队列外,还用Node包装了各种线程状态,这些状态被精心设计为一些数字值:

◆ SIGNAL(-1) :线程的后继线程正/已被阻塞,当该线程release或cancel时要重新这个后继线程(unpark)。

◆ CANCELLED(1):因为超时或中断,该线程已经被取消。

◆ CONDITION(-2):表明该线程被处于条件队列,就是因为调用了Condition.await而被阻塞。

◆ 0:0代表无状态。

2.3 AbstractQueuedSynchronizer.acquireQueued

      acquireQueued的主要作用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又通过tryAccquire重试是否能获得锁,如果重试成功能则无需阻塞,直接返回。

/**
* Acquires in exclusive uninterruptible mode for thread already in
* queue. Used by condition wait methods as well as acquire.
*
* @param node the node
* @param arg the acquire argument
* @return {@code true} if interrupted while waiting
*/
final boolean acquireQueued(final Node node, int arg) {
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} catch (RuntimeException ex) {
cancelAcquire(node);
throw ex;
}
}

仔细看看这个方法是个无限循环,感觉如果p == head && tryAcquire(arg)条件不满足循环将永远无法结束,当然不会出现死循环,奥秘在于第12行的parkAndCheckInterrupt会把当前线程挂起,从而阻塞住线程的调用栈。

/**
* Convenience method to park and then check if interrupted
*
* @return {@code true} if interrupted
*/
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}

如前面所述,LockSupport.park最终把线程交给系统(Linux)内核进行阻塞。当然也不是马上把请求不到锁的线程进行阻塞,还要检查该线程的状态,比如如果该线程处于Cancel状态则没有必要,具体的检查在shouldParkAfterFailedAcquire中:

/**
* Checks and updates status for a node that failed to acquire.
* Returns true if thread should block. This is the main signal
* control in all acquire loops. Requires that pred == node.prev
*
* @param pred node's predecessor holding status
* @param node the node
* @return {@code true} if thread should block
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int s = pred.waitStatus;
if (s < 0)
/*
* This node has already set status asking a release
* to signal it, so it can safely park
*/
return true;
if (s > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
}
else
/*
* Indicate that we need a signal, but don't park yet. Caller
* will need to retry to make sure it cannot acquire before
* parking.
*/
compareAndSetWaitStatus(pred, 0, Node.SIGNAL);
return false;
}

检查原则在于:

◆ 规则1:如果前继的节点状态为SIGNAL,表明当前节点需要unpark,则返回成功,此时acquireQueued方法的第12行(parkAndCheckInterrupt)将导致线程阻塞。

◆ 规则2:如果前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,导致线程阻塞。

◆ 规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同。

总体看来,shouldParkAfterFailedAcquire就是靠前继节点判断当前线程是否应该被阻塞,如果前继节点处于CANCELLED状态,则顺便删除这些节点重新构造队列。

至此,锁住线程的逻辑已经完成,下面讨论解锁的过程。

3. 解 锁

请求锁不成功的线程会被挂起在acquireQueued方法的第12行,12行以后的代码必须等线程被解锁锁才能执行,假如被阻塞的线程得到解锁,则执行第13行,即设置interrupted = true,之后又进入无限循环。

从无限循环的代码可以看出,并不是得到解锁的线程一定能获得锁,必须在第6行中调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。通过之后将要介绍的解锁机制会看到,第一个被解锁的线程就是Head,因此p == head的判断基本都会成功。

至此可以看到,把tryAcquire方法延迟到子类中实现的做法非常精妙并具有极强的可扩展性,令人叹为观止!当然精妙的不是这个Templae设计模式,而是Doug Lea对锁结构的精心布局。

解锁代码相对简单,主要体现在AbstractQueuedSynchronizer.release和Sync.tryRelease方法中:

class AbstractQueuedSynchronizer

/**
* Releases in exclusive mode. Implemented by unblocking one or
* more threads if {@link #tryRelease} returns true.
* This method can be used to implement method {@link Lock#unlock}.
*
* @param arg the release argument. This value is conveyed to
* {@link #tryRelease} but is otherwise uninterpreted and
* can represent anything you like.
* @return the value returned from {@link #tryRelease}
*/
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}

class Sync

protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}

tryRelease与tryAcquire语义相同,把如何释放的逻辑延迟到子类中。tryRelease语义很明确:如果线程多次锁定,则进行多次释放,直至status==0则真正释放锁,所谓释放锁即设置status为0,因为无竞争所以没有使用CAS。
      release的语义在于:如果可以释放锁,则唤醒队列第一个线程(Head),具体唤醒代码如下:

/**
* Wakes up node's successor, if one exists.
*
* @param node the node
*/
private void unparkSuccessor(Node node) {
/*
* Try to clear status in anticipation of signalling. It is
* OK if this fails or if status is changed by waiting thread.
*/
compareAndSetWaitStatus(node, Node.SIGNAL, 0); /*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}

这段代码的意思在于找出第一个可以unpark的线程,一般说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,因此比较稳妥的办法是从后往前找第一个可用线程。貌似回溯会导致性能降低,其实这个发生的几率很小,所以不会有性能影响。之后便是通知系统内核继续该线程,在Linux下是通过pthread_mutex_unlock完成。之后,被解锁的线程进入上面所说的重新竞争状态。

4. Lock VS Synchronized

AbstractQueuedSynchronizer通过构造一个基于阻塞的CLH队列容纳所有的阻塞线程,而对该队列的操作均通过Lock-Free(CAS)操作,但对已经获得锁的线程而言,ReentrantLock实现了偏向锁的功能。

synchronized的底层也是一个基于CAS操作的等待队列,但JVM实现的更精细,把等待队列分为ContentionList和EntryList,目的是为了降低线程的出列速度;当然也实现了偏向锁,从数据结构来说二者设计没有本质区别。但synchronized还实现了自旋锁,并针对不同的系统和硬件体系进行了优化,而Lock则完全依靠系统阻塞挂起等待线程。

当然Lock比synchronized更适合在应用层扩展,可以继承AbstractQueuedSynchronizer定义各种实现,比如实现读写锁(ReadWriteLock),公平或不公平锁;同时,Lock对应的Condition也比wait/notify要方便的多、灵活的多。

转:http://developer.51cto.com/art/201111/304387.htm

Java Lock的更多相关文章

  1. 转载:Java Lock机制解读

    Java Lock机制解读 欢迎转载: https://blog.csdn.net/chengyuqiang/article/details/79181229 1.synchronized synch ...

  2. Java Lock Example – ReentrantLock(java锁的例子)

    Welcome to Java Lock example tutorial. Usually when working with multi-threaded environment, we use ...

  3. Java Lock ReentrantLock ReentrantReadWriteLock

    Lock与Synchronized的区别:   1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现: 2)synchronized在发生异 ...

  4. [Java] [Lock] [Synchronized VS ReentrantLock]

    Overview java编写多线程程序时,为了保证线程安全,需要对数据进行同步,经常用到的两种同步方式就是synchronized和重入锁ReentrantLock. 相似点 都是加锁方式 都是阻塞 ...

  5. Java Lock & Condition

    /* jdk1.5以后将同步和锁封装成了对象. 并将操作锁的隐式方式定义到了该对象中, 将隐式动作变成了显示动作. Lock接口: 出现替代了同步代码块或者同步函数.将同步的隐式锁操作变成现实锁操作. ...

  6. Java Lock的使用

    + ReentrantLock类的使用 + ReentrantReadWriteLock类的使用 1. 使用ReentrantLock类 ReentrantLock类能够实现线程之间同步互斥,并且在扩 ...

  7. 深入分析 Java Lock 同步锁

    前言 Java 的锁实现,有 Synchronized 和 Lock.上一篇文章深入分析了 Synchronized 的实现原理:由Java 15废弃偏向锁,谈谈Java Synchronized 的 ...

  8. java lock锁住特定对象

    由于lock没有锁住特定对象的概念,该如何做到像synchronized同步块一样的效果呢? 答案:为每一个需要加锁的对像分配一把锁. 示例: List<User> users = new ...

  9. Java lock 能被中断, synchronized 不能被中断

    1.lock是可中断锁,而synchronized 不是可中断锁 线程A和B都要获取对象O的锁定,假设A获取了对象O锁,B将等待A释放对O的锁定, 如果使用 synchronized ,如果A不释放, ...

随机推荐

  1. python 缩进问题

    200 ? "200px" : this.width)!important;} --> 介绍 在python中认为规定4个空格缩进,缩进的代码可以理解成一个块,但是使用缩进也 ...

  2. as自定义菜单。

    与菜单相关的类一共有3个 ContextMenu类 ContextMenuBuiltInItems类 //与系统内置菜单相关的类 ContextMenuItem类 //与用户自定义菜单相关的类

  3. JAVA核心技术--继承

    1.继承:向上追溯,对同一批类的抽象,延续和扩展父类的一切信息! 1)关键字:extends      例如,父类是Animal,子类是Dog;   eg: public class Dog exte ...

  4. 系列文章--SharePoint 开发教程

    SharePoint 2013 图文开发系列之入门教程 学习地址:http://www.cnblogs.com/jianyus/p/3461719.html 里面有2007.2010.2013各个版本 ...

  5. cocos2dx json数据解析

    转自:http://blog.csdn.net/wangbin_jxust/article/details/9707873 cocos2dx本身没有json解析类库,我们这里引入libjson进行解析 ...

  6. SIP入门(二):建立SIPserver

    在我的上一篇文章中已经介绍怎样通过SIP软电话直接通话,可是假设须要支持很多其它用户互相通话,同一时候基于安全考虑,须要对用户帐户登录进行验证控制,这些情况下就须要建立SIPserver. SIPse ...

  7. android 系统定制的小技巧(网络收集)

    1开机图片: android-logo-mask.png android-logo-shine.png 这两个图片一个在上一个在下 ./out/target/common/obj/JAVA_LIBRA ...

  8. asp.net 后台获取flv视频地址进行播放【转】

    源码下载:http://download.csdn.net/detail/njxiaogui/7609687 前台:.aspx <table> <tr> <td>& ...

  9. oc-26-动态类型检测

    /** 1).判断对象是不是指定类的对象或者指定类的子类对象. - (BOOL)isKindOfClass:(Class)aClass; 2).判断对象是不是1个特定类型的对象,不包括子类. - (B ...

  10. 面试感悟----一名3年工作经验的程序员应该具备的技能 JAVA 必读书

    http://www.cnblogs.com/xrq730/p/5260294.html#3470685 http://www.cnblogs.com/xrq730/p/4994545.html