POJ 1584:A Round Peg in a Ground Hole
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 5741 | Accepted: 1842 |
Description
so are intended to fit inside a round hole.
A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure
out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue.
There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be
structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding
hole in other pieces, the precise location where the peg must fit is known.
Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn).
The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).
Input
Line 1 < nVertices > < pegRadius > < pegX > < pegY >
number of vertices in polygon, n (integer)
radius of peg (real)
X and Y position of peg (real)
n Lines < vertexX > < vertexY >
On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.
Output
HOLE IS ILL-FORMED if the hole contains protrusions
PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position
PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position
Sample Input
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1
Sample Output
HOLE IS ILL-FORMED
PEG WILL NOT FIT
题意是按照一定顺序(顺时针或是逆时针)给定一些点,问这些点组成的图形是不是凸包。如果不是,输出“HOLE IS ILL-FORMED”。如果是,又有一个圆,问该圆是否在凸包里面。在里面,输出“PEG WILL FIT”。不在里面,输出“PEG WILL NOT FIT”。
自己对于输入过来的点,就看输入过来的点 叉积 是不是一直大于零,或是一直小于零。
然后对于圆心是不是在凸包里面,我的判断方法是计算面积。如果以圆心、凸包上的两个点为三条形的面积总和与凸包的总面积相等,那这个点一定在凸包里面。否则就在外面。
至于半径那部分,就是计算点到直线的距离,判断与半径之间的关系。
折磨了我整整一个上午。。。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; struct no
{
double x, y;
}node[2005], peg, orign; int n;
double peg_r; double dis(no n1, no n2)
{
if (n1.x == n2.x)
{
return fabs(n1.x - peg.x);
}
else
{
double k = (n2.y - n1.y) / (n2.x - n1.x);
double b = n2.y - k*n2.x;
return fabs(k*peg.x - peg.y + b) / sqrt(k*k + 1);
}
} double xmult(double x1, double y1, double x2, double y2)
{
return x1*y2 - x2*y1;
} double Across(no n1, no n2, no n3, no n4)
{
return xmult(n2.x - n1.x, n2.y - n1.y, n4.x - n3.x, n4.y - n3.y);
} bool convex()
{
int i;
double res, sign = 0;
for (i = 0; i < n; i++)
{
res = Across(node[i%n], node[(i + 1) % n], node[(i + 1) % n], node[(i + 2) % n]);
if (sign == 0)
{
sign = res;
}
else if (sign > 0)
{
if (res < 0)
return true;
}
else if (sign < 0)
{
if (res > 0)
return true;
}
}
return false; } int main()
{
int i, pos_x;
double min_x; while (cin >> n)
{
if (n < 3)
break;
cin >> peg_r >> peg.x >> peg.y;
min_x = 100005; for (i = 0; i < n; i++)
{
cin >> node[i].x >> node[i].y;
if (node[i].x < min_x)
{
min_x = node[i].x;
pos_x = i;
}
else if (min_x == node[i].x&&node[i].y < node[pos_x].y)
{
pos_x = i;
}
}
orign = node[pos_x]; if (convex())
{
cout << "HOLE IS ILL-FORMED" << endl;
}
else
{
int sign = 1;
double sum1 = 0;
for (i = 0; i<n; ++i)
{
sum1 += fabs(((node[i%n].x - node[1].x) * (node[(i + 1) % n].y - node[1].y) - (node[i%n].y - node[1].y) * (node[(i + 1) % n].x - node[1].x)));
} double sum2 = 0; for (i = 0; i < n; ++i)
{
sum2 += fabs(((node[i%n].x - peg.x) * (node[(i + 1) % n].y - peg.y) - (node[i%n].y - peg.y) * (node[(i + 1) % n].x - peg.x)));
} if (sum1 == sum2)
{
sign = 0;
} if (sign == 1)
{
cout << "PEG WILL NOT FIT" << endl;
}
else
{
double len;
sign = 0;
for (i = 0; i < n; i++)
{
len = dis(node[i%n], node[(i + 1) % n]);
if (len < peg_r)
{
sign = 1;
break;
}
}
if (sign == 1)
{
cout << "PEG WILL NOT FIT" << endl;
}
else
{
cout << "PEG WILL FIT" << endl;
}
}
}
} return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ 1584:A Round Peg in a Ground Hole的更多相关文章
- POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...
- A Round Peg in a Ground Hole(凸包应用POJ 1584)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5684 Accepte ...
- POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4438 Acc ...
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5456 Acc ...
- POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6682 Acc ...
- POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- A Round Peg in a Ground Hole(判断是否是凸包,点是否在凸包内,圆与多边形的关系)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4628 Accepted: 1434 Description The D ...
- poj1584 A round peg in a ground hole【计算几何】
含[判断凸包],[判断点在多边形内],[判断圆在多边形内]模板 凸包:即凸多边形 用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点. The ...
随机推荐
- 「USACO08JAN」电话线Telephone Lines
传送门 Luogu 解题思路 考虑二分,每次把大于二分值的边的权设为1,小于等于的设为0,如果最短路<=k则可行,记得判无解 细节注意事项 咕咕咕 参考代码 #include <algor ...
- 1-7SpringBoot之表单验证@Valid
SpringBoot提供了强大的表单验证功能实现,给我们省去了写验证的麻烦: 这里我们给下实例,提交一个有姓名和年龄的表单添加功能, 要求姓名不能为空,年龄必须是不小于18 : 我们先新建一个Stud ...
- 开发自己的 chart【转】
Kubernetes 给我们提供了大量官方 chart,不过要部署微服务应用,还是需要开发自己的 chart,下面就来实践这个主题. 创建 chart 执行 helm create mychart 的 ...
- 51nod 1009:数字1的数量
1009 数字1的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 收藏 关注 给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个 ...
- springboot整合quartz并持久化到数据库
首先,这里的持久化是是如果当服务器宕机时,任务还在为我们保存.并且在启动服务器之后仍然可以自动执行 一.创建quartz 建表语句mysql的,quartz 2.3.0版本 DROP TABLE IF ...
- Java笔记--集合
1.Java集合类可以用于存储数量不等的多个对象,还可以用于保存具有映射关系的关联数组. 2.Java集合可分为Collection和Map两种体系: --Collection:1)Set:元素无序. ...
- 强大的promise
这个玩意叫做普罗米修斯,希腊神话的盗火英雄 promise只用来包装异步函数,同步的会搞乱执行顺序,生产BUG // 如何使用 function pro(){ return new Promise(f ...
- 010.Oracle数据库 , ORDER BY 按升序降序排序
/*Oracle数据库查询日期在两者之间*/ SELECT DISTINCT ATA FROM LM_FAULT WHERE ( OCCUR_DATE BETWEEN to_date( '2017-0 ...
- SwiftUI中多设备运行方法
https://blog.csdn.net/weixin_42679753/article/details/94465674 https://www.jianshu.com/p/17fc7929fcb ...
- postman 请求get post方法的 区别
1.HTTP的五种请求方法:GET, POST ,HEAD,OPTIONS, PUT, DELETE, TRACE 和 CONNECT 方法. GET请求:请求指定的页面信息,并返回实体主体.(通常用 ...