C - Sweets Eating
规律题
前缀和+规律
先求前缀和。。。答案为c[i]=arr[i]+c[i-m]//i>m时。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=2E5+;
ll arr[N];
ll c[N];
int main(){
ll n,m;
cin>>n>>m;
for(ll i=;i<=n;i++) cin>>arr[i];
sort(arr+,arr++n);
for(ll i=;i<=n;i++) arr[i]+=arr[i-];
for(ll i=;i<=n;i++){
if(i<=m) c[i]=arr[i];
else c[i]=arr[i]+c[i-m];
}
for(ll i=;i<=n;i++){
cout<<c[i]<<" ";
}
return ; }
对于这种数据极大,只能o(n)解决的题目,一般都是规律题,打表好好找规律,可以找到的!!!
C - Sweets Eating的更多相关文章
- Codeforces Round #600 (Div. 2) C - Sweets Eating
#include<iostream> #include<algorithm> #include<cstring> using namespace std ; typ ...
- Codeforces Round #600 (Div. 2)
传送门 A. Single Push 直接乱搞即可. Code /* * Author: heyuhhh * Created Time: 2019/11/16 22:36:20 */ #include ...
- hdu------(4302)Holedox Eating(树状数组+二分)
Holedox Eating Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- Bzoj 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 二分
1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1272 Solve ...
- BZOJ1609: [Usaco2008 Feb]Eating Together麻烦的聚餐
1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 938 Solved ...
- BZOJ 2016: [Usaco2010]Chocolate Eating
题目 2016: [Usaco2010]Chocolate Eating Time Limit: 10 Sec Memory Limit: 162 MB Description 贝西从大牛那里收到了 ...
- BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐( LIS )
求LIS , 然后用 n 减去即为answer ---------------------------------------------------------------------------- ...
- BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐
1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按F ...
- BZOJ 2016: [Usaco2010]Chocolate Eating( 二分答案 )
因为没注意到long long 就 TLE 了... 二分一下答案就Ok了.. ------------------------------------------------------------ ...
随机推荐
- 洛谷1265prim算法求最小生成树
题目链接:https://www.luogu.com.cn/problem/P1265 最小生成树的prim算法跟dijkstra算法非常像,就是将点分成两个集合,一个是已经在生成树中的点的集合,一个 ...
- 概率-Knight Probability in Chessboard
2018-07-14 09:57:59 问题描述: 问题求解: 本题本质上是个挺模板的题目.本质是一个求最后每个落点的数目,用总的数目来除有所可能生成的可能性.这种计数的问题可以使用动态规划来进行解决 ...
- Javascript之实现页面倒计时效果
本文将从需求实现的角度,逐步讲解如何在页面上实现倒计时效果,其中部分涉及到的知识会做拓展讲解,最后将所有代码封装,适用于不同情况下倒计时功能的实现. 效果图 一.分析需求 要实现倒计时效果,可拆解为以 ...
- Python第五章-内置数据结构05-集合
Python内置数据结构 五.集合(set) python 还提供了另外一种数据类型:set. set用于包含一组无序的不重复对象.所以set中的元素有点像dict的key.这是set与 list的最 ...
- 服务器安装 mongodb
参考 https://www.cnblogs.com/layezi/p/7290082.html
- Python python对象 range
""" range(stop) -> range object range(start, stop[, step]) -> range object Retu ...
- 理解MapReduce计算构架
用Python编写WordCount程序任务 程序 WordCount 输入 一个包含大量单词的文本文件 输出 文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词 ...
- Kaggle竞赛入门(二):如何验证机器学习模型
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...
- Sublime Text 2 Install Package Debug
本文转载自CSDN空间freshlover的博客<Sublime Text 无法使用Package Control或插件安装失败的解决方法>,转载请注明出处,谢谢! Sublime Tex ...
- SWUST OJ 1075 求最小生成树(Prim算法)
求最小生成树(Prim算法) 我对提示代码做了简要分析,提示代码大致写了以下几个内容 给了几个基础的工具,邻接表记录图的一个的结构体,记录Prim算法中最近的边的结构体,记录目标边的结构体(始末点,值 ...