1.问题描述

八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n×n,而皇后个数也变成n。当且仅当 n = 1 或 n ≥ 4 时问题有解。

2.思路分析

 

回溯法:当把问题分成若干步骤并递归求解时,如果当前步骤没有合法的选择时,则函数即调用上一层的递归,此即为回溯。

在每次的正向递归时是一个试探的过程,将本次的影响带入到下一次的递归过程中去,如果在下一次的函数中,并没有找到一个合适的解去调用在下一层的函数,则证明上一次的函数过程产生了不正确的中间结果,这个结果使得整个函数不能被正确执行了,所以此时应返回对于全局变量的影响(如果产生了如果有必要,回溯法的过程中大多数是有必要返回这个影响的),然后再次去试探。。。一直到达递归的出口。

八皇后问题的思路即:

1):以行的方式去摆放棋子

2):在每次的试探摆放时,检查是否有以前的棋子与本次拟摆放的位置相冲突,(由于是按行摆放,故只需验证是否有同一列和同一对角线即可)

3): 如果产生了冲突,则返回上一层的调用

4):如果产生了符合条件的位置,则进入下一行的判断

package lianxi;

import java.util.Scanner;

public class EightQueen {
static int tol = 0,n;
static int C[] ;
static Scanner scan = new Scanner(System.in);
public static void main(String[] args) {
n = scan.nextInt();
C = new int[n];
for(int j=0;j<n;j++){
C[j] = 0;
} search(0);
System.out.println(tol); }
private static void search(int cur) {
if(cur == n){
tol++;
System.out.println("第"+tol+"种放法:");
for(int i = 0;i< n;i++){
for(int i1 = 0;i1< n;i1++){
if(C[i] == i1)
System.out.print('Q');
else
System.out.print('+');
}
System.out.println();
}
System.out.println();
}else {
for(int j = 0;j<n;j++){
int ok = 1;
C[cur] = j;
for(int k = 0;k<cur ;k++){
if(C[k] == C[cur] || C[k] - k ==C[cur]-cur || C[cur] + cur == C[k] + k ){
//C[k] - k ==C[cur]-cur   C[cur] + cur == C[k] + k分别用于判断是否有与当前位置处于右下对角线和左下对角线的皇后
ok = 0;
break;
}
}
if(ok==1)search(cur+1);
} } } }

算法学习 八皇后问题的递归实现 java版 回溯思想的更多相关文章

  1. 【算法】八皇后问题 Python实现

    [八皇后问题] 问题: 国际象棋棋盘是8 * 8的方格,每个方格里放一个棋子.皇后这种棋子可以攻击同一行或者同一列或者斜线(左上左下右上右下四个方向)上的棋子.在一个棋盘上如果要放八个皇后,使得她们互 ...

  2. C#中八皇后问题的递归解法——N皇后

    百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections. ...

  3. 一道算法题-八皇后问题(C++实现)

    八皇后问题 一.题意解析 国际象棋中的皇后,可以横向.纵向.斜向移动.如何在一个8X8的棋盘上放置8个皇后,使得任意两个皇后都不在同一条横线.竖线.斜线方向上?八皇后问题是一个古老的问题,于1848年 ...

  4. Java实现蓝桥杯 算法提高 八皇后 改

    **算法提高 8皇后·改** 时间限制:1.0s 内存限制:256.0MB 提交此题 问题描述 规则同8皇后问题,但是棋盘上每格都有一个数字,要求八皇后所在格子数字之和最大. 输入格式 一个8*8的棋 ...

  5. python学习八皇后问题

    0 # -*- coding: utf-8 -*- 1 import random #冲突检查,在定义state时,采用state来标志每个皇后的位置,其中索引用来表示横坐标,基对应的值表示纵坐标,例 ...

  6. 八皇后问题 dfs/递归

    #include <bits/stdc++.h> using namespace std; const int maxn = 55; int ans=0; int vis_Q[maxn]; ...

  7. C++基础算法学习——N皇后问题

    n皇后问题:输入整数n, 要求n个国际象棋的皇后,摆在n*n的棋盘上,互相不能攻击,输出全部方案. 代码如下: #include <iostream> #include<cmath& ...

  8. C语言:试探算法解决“八皇后”问题

    #include <stdio.h> #define N 4 int solution[N], j, k, count, sols; int place(int row, int col) ...

  9. 算法训练 瓷砖铺放 【递归】java

      算法训练 瓷砖铺放   时间限制:1.0s   内存限制:512.0MB     锦囊1 锦囊2 锦囊3 问题描述 有一长度为N(1<=N<=10)的地板,给定两种不同瓷砖:一种长度为 ...

随机推荐

  1. redis实现二级缓存

    缓存的作用就是降低数据库的使用率,来减轻数据库的负担.我们平常的操作一般都是查>改,所以数据库的有些查操作是重复的,如果一直使用数据库就会有负担.Mybatis也会做缓存,也会有一级缓存和二级缓 ...

  2. 【问】:和=在map里面的区别

  3. C:指针习题

    1. 请指出以下程序段中的错误. 程序中的错误有:(1)p=i:类型不匹配.(2)q=*p:q 是指针,*p 是指针 p 指向变量的值.(3)t='b':t 是指针类型. 解释:指针变量是一种存放地址 ...

  4. NumPy的随机函数子库——numpy.random

    NumPy的随机函数子库numpy.random 导入模块:import numpy as np 1.numpy.random.rand(d0,d1,...,dn) 生成一个shape为(d0,d1, ...

  5. MQ消息丢了怎么破?在线等.....

    MQ又丢消息了,老板眉头一紧............ 在我们从事技术的工作中,离不开中间件,mq就是常见的中间件之一,丢消息可能是我们经常遇到的,为啥会丢?丢了怎么破?测试能不能复现,很多同学知道一些 ...

  6. win10 pycharm快捷键

    编辑: 1.复制(行) ctrl + D (光标与需要复制的代码同行) 2.删除(行) ctrl + Y(光标与需要删除的代码同行) 3.光标换行 Shift + Enter(不管光标在该行的哪个位置 ...

  7. node--非阻塞式I/O,单线程,异步,事件驱动

    1.单线程 不同于其他的后盾语言,node是单线程的,大大节约服务器开支 node不为每个客户创建一个新的线程,仅使用一个线程.通过非阻塞I/O以及 事件驱动机制,使其宏观上看是并发的,可以处理高并发 ...

  8. 2017、2018面试分享(js面试题记录)记得点赞分享哦;让更多的人看到~~

    2017面试分享(js面试题记录) 1. 最简单的一道题 '11' * 2 'a8' * 3 var a = 2, b = 3; var c = a+++b; // c = 5 2. 一道this的问 ...

  9. JZOJ 3518. 【NOIP2013模拟11.6A组】进化序列(evolve)

    3518. [NOIP2013模拟11.6A组]进化序列(evolve) (File IO): input:evolve.in output:evolve.out Time Limits: 1000 ...

  10. pycharm专业版激活破解(亲测有效)

    完成破解步骤,亲测有效! 1.打开路径,修改hosts文件:C:\Windows\System32\drivers\etc 找到hosts文件打开 最后一行添加这行代码:   0.0.0.0 acco ...